
UNIVERSITY of CALIFORNIA

SANTA CRUZ

USING NETWORK ATTACHED STORAGE IN A SECURED DISTRIB UTED
FILE SYSTEM

A dissertationsubmittedin partialsatisfactionof the
requirementsfor thedegreeof

DOCTOROF PHILOSOPHY

in

COMPUTERSCIENCE

by

Benjamin Clay Reed

June2000

The dissertationof Benjamin Clay Reedis
approved:

Prof.DarrellD. E. Long,Chair

Prof.TaraM. Madhyastha

Dr. CynthiaDwork

Dr. RanCanetti

Deanof GraduateStudies

Copyright c
�

by

BenjaminReed

2000

Network AttachedStoragein a SecuredDistributedFile System
BenjaminReed

Abstract

Distributedfile serversarebecominganimportantpartof thenetwork infrastructure.The
increasedcapacityof disk driveshasincreasedthe amountof storagemanagedby the file server.
Thenumberof network clientshave increased,aswell asthebandwidthandconnectivity between
theclientsandservers.Thefile server is a bottleneckin theaccesspathbetweenthenetwork client
andthedataonthedisks.To alleviatethisbottleneckit hasbeenproposedto directlyattachdisksto
thenetwork, therebyincreasingtheaggregatenetwork bandwidthto thedataandrelieving thefile
server. Attachingdisksto thenetwork bringssecurityproblemsthatdo not exist whenthedisk is
only attachedto thefile server.

Simply applyingexisting authenticationprotocolsto network attachedstorageis not suf-
ficient becauseof their administrative and computationalrequirements.We review someof the
commonmeansof authenticationin usetodayandtheir weaknesseswhenappliedto network at-
tachedstorage.

To addresstheseauthenticationweaknesses,wepresentanauthenticationprotocolto pro-
vide strongauthenticationguaranteesto network attachedstorage. This protocol avoids the in-
frastructureand computationaloverheadof other protocolswhile still providing strongidentity,
integrity, andfreshnessguarantees.

To enabletheprotocolwe introduceanobjectmodelto permitthecorrectlevel of access
controlto thedatastoredon thenetwork storagedevices.Additional advantagesto usinganobject
interfaceasopposedto a block interfacearediscussed.

We describea completelydistributedfile system,which we implementedfor Linux, that
takesadvantageof theauthenticationprotocolandobjectmodel.Thefile systemexhibitsscalability,
manageability, andsecurityfeaturesmissingin mostcontemporaryfile systems.It alsoillustrates
how addingsimpleobjectsemanticsto network storagedevicescanremovetheneedfor afile server
without sacrificingsecurity.

iv

Acknowledgments

I mustfirst thankMom for teachingmeto love to learnandDadfor his guidanceandex-
ample.My secondaryeducationin Fairfield,Ohio,provideda foundationonwhich to build. Miami
Universitytaughtmehow fun learningcanbe.DePaulUniversityshowedmethewondersof Com-
puterScience,andthe University of California,SantaCruz, taughtme to explore. Unfortunately,
spacedoesn’t permitmeto acknowledgeall thewonderfulteachersandadvisorsI havehadat these
institutions.At SantaCruz, in particular, I enjoyedandlearnedimmenselyfrom every instructorI
hadandworkedfor. If therewerenotsomany, I wouldbeableto acknowledgethemindividually.

Specialacknowledgementgoesto my advisor, Darrell Long,without whosepatienceand
guidanceI would have never beenableto finish (or start,for thatmatter). It washis commentsin
his ComputerSecurityclassthat inspiredthis work. It wasthe freedomI hadat IBM’ s Almaden
ResearchCenterthatlet mefinish thisparticularwork. I mustespeciallythankmy managers,Steve
WelchandNorm Pass,who refusedto let menotgetmy degree.

Theadvancementprocessof thedoctoralprogramrequiresspecialefforts on thepartof
theadvancementcommitteeandthedefensecommittee.I amtruly gratefultoAlexandreBrandwajn,
CynthiaDwork, Darrell Long, andAnujan Varma,who wereon my advancementcommittee.As
well as Darrell Long, TaraMadhyastha,Cynthia Dwork, andRanCanetti for their work on my
defensecommittee.

CynthiaandRanhave taughtme andguidedme in thesecurityaspectsof this thesis. I
certainlywould not have beenableto get it right without their help. Ed Chron,RandalBurns,and
Darrell Long helpedme with the systemspart of this work. Ed’s supportandencouragement,in
particular, helpedmecontinuethiswork. BenGertzfielddid theinitial Linux VFSwork andhelped
usflushout thedesignof theBrave client.

Obviously, every good ideais built on othersandthe influenceof my collegesandthe
bodyof publishedwork in this areahelpedmepull theneededpiecestogether. Most of all, I must
alsoacknowledgeGod’s efforts in gettinga coupleof goodideasthroughmy thick skull, andthe
unwaveringsupportandencouragementof my wife, Carolina.

v

Thisdissertationis dedicatedto my wife andchildren.

vi

Contents

Abstract iii

Acknowledgments iv

List of Figures ix

List of Tables x

1 Intr oduction 1
1.1 DistributedFile Systems . 2
1.2 RelatedWork . 2

1.2.1 DistributedFile Systems. 2
1.2.2 Methodsof Authentication. 9

1.3 Overview of theThesis . 14

2 The SCARED Object Model 15
2.1 ObjectAbstraction . 15

2.1.1 BasicSemantics . 16
2.1.2 DataObjectSemantics. 16
2.1.3 MetadataObjectSemantics. 17

2.2 Block Allocation . 18
2.3 CacheManagement. 19
2.4 AccessControl . 20
2.5 Summary . 21

3 Deriving Keysfor Authentication 22
3.1 DistributedSCAREDEnvironment. 23
3.2 Key Distribution WithoutKey Exchange. 24
3.3 Key Types . 24

3.3.1 GeneratingCapabilityKeys . 25
3.3.2 GeneratingIdentity Keys . 26
3.3.3 CombiningKeys . 26

3.4 Revocation . 27
3.4.1 Key Expiration . 27
3.4.2 CapabilityKey Revocation . 27
3.4.3 Identity Key Revocation . 28

vii

3.5 SecurityAnalysis . 28
3.6 Summary . 31

4 An Authenticated Messageprotocol for SCARED 32
4.1 Integrity andIdentityGuarantees. 33
4.2 FreshnessGuarantees. 34

4.2.1 Verifying FreshnessusingCounters . 35
4.2.2 Verifying FreshnessusingTimers . 35

4.3 TheRequest/ResponseProtocol . 36
4.3.1 TheRequestProtocol. 36
4.3.2 ResponseProtocol . 36
4.3.3 AsynchronousResponses. 37

4.4 Encryption. 37
4.5 Analysisof MessageProtocol . 38

4.5.1 ExchangingtheFreshnessGuarantee . 38
4.5.2 TheGenericMessageProtocol . 39

4.6 Summary . 41

5 UsingSCARED in a Distributed File System 42
5.1 Brave File SystemLayout. 42
5.2 Brave Semantics . 44

5.2.1 File Semantics . 44
5.2.2 DirectorySemantics . 45

5.3 Brave Operations . 45
5.3.1 Creation. 45
5.3.2 Deletion. 46
5.3.3 File SystemChecks. 46

5.4 Conclusion . 47

6 Implementing SCARED and Brave 48
6.1 UNIX file systems. 48

6.1.1 I-nodes . 48
6.1.2 Directories . 49
6.1.3 Virtual File Systems . 49

6.2 IntegratingBraveandSCAREDinto theVFS . 49
6.2.1 Allocation Management . 51

6.3 ImplementingSCARED . 51
6.4 Summary . 52

7 Conclusions 53
7.1 Contributions . 53

7.1.1 Comparisonto RelatedWork . 53
7.1.2 Specificadvantagesof SCAREDandBrave 54

7.2 FutureWork . 55
7.2.1 Caching. 55
7.2.2 Locking . 55

viii

7.2.3 StripingandMirroring . 56
7.2.4 Allocation andLoadBalancing . 56

A KeyData Encoding 57
A.1 Identity Attribute . 57
A.2 CapabilityAttributes . 58
A.3 Key InformationAttributes . 59
A.4 Key DataEvaluation . 59

B Pseudo-RandomFunctions 60

Bibliography 62

ix

List of Figures

1.1 Thedataandmetadataaccessesin NFSandCIFS. 3
1.2 Thedataandmetadataaccessesin AFS. 5
1.3 Clientaccessusingdataandmetadataservers. 6
1.4 ClientaccessusingNASD. 7

2.1 Thestructureof afile object. 17
2.2 Thestructureof ametadataobject. 17

3.1 Theadministrator, thestoragedevice,andtheclientarethethreerolesin SCARED.
Thekey derivationschemeallows theadministratorto generateaccesskeys for the
clients.. 23

3.2 Theadministratorsharesakey, K, with thestoragedevicewhich is usedto generate
keys to be given to the clients. In this examplethe messagesmustbe exchanged
over securechannels. 25

3.3 Mixing identityandcapabilitykeys to enableprinteraccessto adataobject. 26

5.1 Brave directoryentrylayout. 43
5.2 An exampledirectorystructurestoredin ametadataobject.. 44

6.1 Brave integrationinto theLinux VFS. 50

x

List of Tables

A.1 SCAREDattributetypesfor key data. 57
A.2 Permissionmasksfor thepermissioncapabilityattribute. 58

1

Chapter 1

Intr oduction

The needto accessanything from anywherehasemphasizedthe role of distributed file
serversin computing.Distributedfile systemsprovide local file systemsemanticswhenaccessing
remotestorage.This allows network clients to incorporatethe remotestorageinto the local file
system.File semanticsarewell understoodby usersandapplications,makingdistributedfile servers
aconvenienttool to usein developingdistributedapplications.

As theroleplayedby distributedfile systemsexpands,someshortcomingsof theirdesign
becomeincreasinglyevident.Fasterclients,highbandwidthconnections,andlargerdrivecapacities
increasethedemandon file servers. Although it would seemthatnetwork file server performance
would belimited by theI/O capacityof thesystemstoragedevices,in actuality, with sufficient I/O
bandwidth,file serversfrequentlybecomeCPUbound. RiedelandGibsonshowed thatevenwith
low overall CPU utilization burst loadsweresufficiently intenseto over-utilize theCPU[47]. By
allowing direct accessto storagedevicesby the clientsthey wereableto reducethe workloadof
thefile servers. This kind of directaccessalsorequiresa supportingauthenticationmechanismto
preventmaliciousclientsfrom makingunauthorizedchangesto thestorageand,consequently, the
file system. While this kind of accesscontrol becomesmoreapparentwhenclientscandirectly
accessthestoragedevices,evenclassicaldistributedfile systemsarefrequentlylackingin thisarea.

Applicationsthatrely on distributedfile systemsshouldnot becompromisedby security
weaknessesof the file systemson which they are built. Data storedon distributed file systems
frequentlyneedto beprotectedfrom unauthorizedaccessor eavesdropping.Theadministratorsof
the distributed file serverscontrol accessto the serversand,consequently, who hasaccessto the
dataon their storagedevices. Encryptioncanbeusedto preserve theconfidentialityof thedatain
thesesituations,but in practiceusersmustencryptoutsideof thefile systemto achieve this kind of
confidentiality. Contemporarydistributedfile systemsareonly beginningto addresstheseissues.

Theauthenticatednetwork attacheddiskswepresentaddresstheseproblemsby providing
anarchitecturebasedonone-wayhashfunctionsproviding for mutualauthenticationof thenetwork
disksandtheclients. This architectureobviatestheneedfor moreperformanceintensive authenti-
cationmethodssuchaspublic-key encryptionandKerberos[40]. Theauthenticationinfrastructure
requiredis very smallandflexible, allowing it to fit into morecomplex systems.

Finally, sinceencryptionis notrequiredto supportauthentication,avarietyof legal issues
canbeavoided. Domesticencryptionis restrictedin somecountries[9], andothersrestrictexport
of encryption[55, 56]. Theserestrictionscanbeavoidedby thenetwork disksallowing thesame
disksto beusedworldwide.

We review thecomponentsof distributedfile systemsin � 1.1. In � 1.2anoverview of the

2

typesof contemporaryfile systemsis presentedto show thecontext in which this work wasdone,
aswell asanoverview of theauthenticationmethodsusedin thosefile systems.An overview of the
restof this thesisis presentedin � 1.3.

1.1 Distrib uted File Systems

In general,a distributedfile systemhasfour components:clients,file servers,authenti-
cationservers,anddatastores. Client machinesaccessfiles on behalfof usersandapplications.
Usersandtheir applicationshave credentialsthatareusedto identify themselvesto anauthentica-
tion server, or evendirectly to a file server. Someexamplesof file systems,which will bereviewed
later, that separatethe file server andthe datastoresareSwift [32] andZebra[22]. Andrew File
System(AFS) [24] is an exampleof a file systemthat separatestheauthenticationandfile server
components.The morecontemporaryfile servers,suchasNetwork File System(NFS) [53] and
CommonInternetFile System(CIFS) [41], do the file serving,authentication,andstorageat the
sameserver.

If anauthenticationserver is present,theclientauthenticatestheuserto theauthentication
server in theform of a password, token,or otherauthenticationmethod.Theauthenticationserver
givestheclient new tokensthatareusedto accessthefile server. Thesetokensmaygrantaccessto
specificfiles on thefile server or maysimply authenticatetheidentity of theuser.

In classicaldistributedfile systems,all accessesto thedatastorearethroughthefile server.
Thefile server verifiestheaccessibilityof thedatabeforecarryingout therequestfrom a client on
thedatastore.Thedatastoreis usuallylocally attachedto thefile server. Sincethelocal storageis
only attachedto thefile server, it cansimply carryout therequestsof thefile server withouthaving
to authenticateor checkaccesspermissions.

Storingdataonanetwork is oftenaccompaniedby thesharingof databetweenusers.For
sharingto occur, usersneedto beableto transferrightsto otherusers.Assignmentof auser’s rights
or of asubsetof thoserightsto anotherusershouldbepossible.Onsomedistributedfile systems,a
usercangive accessto specificfiles. On others,thegranularityof sharingis at thedirectorylevel.
Finally, someonly allow usersto grantaccessto entiresubtrees.

1.2 RelatedWork

This sectionpresentssomekey work in the areaof distributedfile systemsto illustrate
the differencesin their aspects.We startby presentingsomeof the popularserver basedfile sys-
tems,followedby file systemsthatdistributethework acrossmultipleservers,andthencompletely
distributed file systems.After presentingthesefile systems,we will presentwork in the areaof
authentication,followed by someimportantexamplesof the applicationof theseauthentication
methodsin distributedfile systems,beginningwith theweakestformsof authentication.

1.2.1 Distrib uted File Systems

While mostdistributedfile systemssharethecommongoalof extendinglocal file system
semanticsto network storage,theapproachesdiffer greatly. To illustratetheseapproacheswebegin
by presentingtwo of themostpopularnetwork file systems:NFSandCIFS.We thenpresentAFS
andDFS.They allow thefile systemto bespreadacrossmultiple servers.We alsopresenta group

3

connect

localdata & metadataClient Server
requests

Figure1.1: Thedataandmetadataaccessesin NFSandCIFS.

of file systemsthatmanagethefile systemmetadataat file serversandstorethedataon dedicated
dataservers.This ideahasbeenappliedto NFSandAFS by theNASD projectat Carnegie Mellon
University. Finally two serverlessdistributedfile systemsarepresented.

NFS

NFS [53] wasdevelopedby SunMicrosystemsto provide transparentremoteaccessto
files. It usesa RemoteProcedureCall / ExtendedDataRepresentation(RPC/XDR) interfaceto
makeit portableacrossoperatingenvironments.Thefile systemconsistsof statelessfile serversand
file systemclients.NFSis moreafile sharingprotocolthanafile system.TheNFSprotocolimplies
mostlyUNIX semanticsto thefiles,andthefiles themselvesareusuallystoredin a local file system
on thefile server. Thefile server exposessubtreesof thelocal file systemsto thenetwork.

Sincethe files arebeingsharedfrom a local file system,file systemsaccessedby NFS
clientsdo not spanservers. CIFS,describedin thenext section,sharesthis limitation. Figure1.1
illustratesthefile systemaccessin theseserver basednetwork file systems.

When a client connectsto a file server the client first usesthe mount protocol to get
a handleto the root of the sub tree that will be accessed.The mountprotocol server runs on a
privilegedport. Oncethehandleis obtained,theclientscommunicatewith thefile server running
on a non-privilegedport to requestfile anddirectorydata. Version2 of theprotocolrestrictedthe
maximumtransfersizeper requestto 8192bytes.Version3 [8] of theprotocolremoved this limit
which allows for betterperformance.Client cachingis not specifiedin theprotocol,but in practice
NFSclientscachefile datafor 5 secondsanddirectorydatafor 30seconds.Writesarecommittedto
diskwhenreceivedby theserver. Version3 addedawrite commitprotocolto allow multiple writes
beforeactuallycommittingto disk.

The most commonform of authenticationin NFS is network based. Only the server
authenticatestheclient. Theclient doesnot authenticatetheserver. As mentionedin section1.2.2,
network basedauthenticationis subjectto anumberof attacksandtoolsexist to exploit them.Other
proposalsexist for usingDESwith public key encryptionandKerberos,but they have yet to gain
popularity.

NFSis statelessto make it resistantto server failures.Becauseit is stateless,it losesthe
openandclosesemanticsof files. Openandclosesemanticscanbeusedfor efficientcachemanage-
mentbothon server andclient. Cachingreadsis very importantsincereadsaretheoverwhelming
majority of client operations.Thesimpletime basedcachinglimits theeffectivenessof thecache
anddoesnotassurecacheconsistency.

CIFS

TheCommonInternetFile System(CIFS)[41] is a statefulfile sharingprotocolthathas
evolved from a file andprint sharingprotocolfor personalcomputerson a local areanetwork. A

4

CIFS server is able to sharefiles, printers,and FIFO (or namedpipes)with CIFS clients using
Server MessageBlocks (SMB). Communicationbetweenthe client and server takes placevia a
requestSMB anda responseSMB. With oneexception,the client alwaysmakesa requestto the
server not vice-versa. SMB’sareencapsulatedin a NetBIOSpacket andtransportedover a reliable
transportsuchasTCP.

CIFSusesmandatorylocking that is enforcedby theCIFSserver. Filesmaybeopened
with file level locks to provide read,write, andexclusive locks to a file. Byte locking canalsobe
usedto lock rangesof a file for reador write access.Variationsof the readandwrite SMB’s are
availableto performa simultaneousreadandlock on a byterange,aswell asa simultaneouswrite
andunlock. In the caseof the level locks andbyte rangelocks, the locks will be releasedwhen
theclient explicitly releasesthe locksor closesthefile. TheCIFSserver will not revoke the locks
heldby aclient. Thelaterversionsof CIFSaddeda temporarylocking calledopportunisticlocking
that can be requestedby the client when a file is opened. If opportunisticlocking is requested,
theclient neednot write changesto theserver or requestlocks until thefile is to beclosedor the
server revokes the opportunisticlock. If the server mustrevoke an opportunisticlock, the server
sendsan SMB to the client revoking the lock. The client repliesto the requestafter flushingany
datato bewritten andrequestinglocksfor rangesthatwererequestedwhile theopportunisticlock
washeld. The specificationfor theCIFS protocolmakesvery little mentionof caching.Caching
is only mentionedin relationto opportunisticlocking. Cacheconsistency canbemaintainedusing
theCIFSlocking mechanism.However, sincetheserver cannotrevoke locksheldby theclient the
cachesmustbeflushedto theserver quickly andthelocksreleasedto avoid impactingotherclients
waiting on thelock.

CIFS supportstwo securitymodes:share-level anduser-level. In both casesthe client
andserver arebothin possessionof a sharedsecret(i.e. thepassword). Securityis enforcedwhen
a sessionis initiated with a resource.In thecaseof share-level security, accessto the resourceis
restrictedusingapassword. Onceaccessis gainedto aresourceusingshare-level security, thesame
level of accessis usedfor all files andsubdirectoriesin the resource.User-level security, on the
otherhand,requiresauseridandpassword to accesstheresource.Oncetheresourceis accessedthe
level of accesscanvary on anindividual file or directorybasis.

To prevent eavesdroppingof passwords when initially accessingresourcesof a CIFS
server, encryptioncanbeusedwhile authenticating.DESis usedastheencryptionalgorithm.The
variablenames(���) andtermsusedto describethevalidationprotocolaretakenfrom thestandard
[41]. Whentheclient initially connectsto theserver andnegotiatestheprotocollevel thatwill be
used,theserversendsbackacryptkey which is computedby encryptingastringcomposedof eight
questionmarkswith a sevenbytestring,which is usuallya combinationof thetime anda counter.
Theclient beginsencryptingthepassword by calculating����� , which is a stringcomposedof eight
questionmarksencryptedwith � �
	 . � �
	 is theuser’s password paddedwith spacesif necessaryto
form a 14 bytestring. ���
� is ����� with five null bytesappended.Finally, theencryptedpassword is
theresultof encryptingthecrypt key with � �
� . Both theclient andserver performthecalculation
andtheserver validatestheresultsentby theclient with theresultof its own calculation.

If authenticationis doneusingtheabovealgorithm,thepassword is protectedfrom eaves-
droppingandtheuseof thecryptkey seemsto protecttheresultfrom beingreplayedto gainaccess.
Theauthenticationis only doneon initial connectionto theresource.Theconnectionorientedpro-
tocol is relieduponto maintainthe integrity of the restof thesession.As waspointedout earlier,
TCPcannotberelieduponto provide thiskind of integrity. Packetscanbemanipulatedto andfrom
the server in orderto fool the client andserver; or the sessionitself could be taken over after the

5

connect

localVolume Server

connect

localVolume Server

connect

localVolume Server

Client
requests
data & metadata

Figure1.2: Thedataandmetadataaccessesin AFS.

connectionis made,giving theattacker accessto theresourceasif sheweretheuserthatconnected
to theresource.

DedicatedServer

Generalpurposeoperatingsystemsprovide many functionsandfeaturesthat aresuper-
fluousto a systemwhosesolefunction is to act asa file server. Someof thesefunctionsinclude
graphicaluserinterfaces,multitasking,andapplicationprogrammingsupport. Operatingsystems
have beencreatedto expresslysupportthefile servingfunction. An exampleof suchanoperating
systemis Network Appliance’sdedicatedfile server. Theircustomizedoperatingsystemis designed
specificallyfor processingnetwork requests,andincludesa Write AnywhereFile Layout(WAFL)
[23] that is optimizedfor file serving.Theresultis a file server with improvedperformancewhen
comparedto afile serverhostedby ageneralpurposeoperatingsystem.Severalexistingfile sharing
protocolsaresupportedincludingCIFS,thedefactoWindows file sharingprotocol,andNFS,the
de facto UNIX file sharingprotocol. This allows the server to communicatewith many existing
network clients.

AFS/DFS

Andrew File System(AFS) [24] is a statefuldistributedfile system.It hasa muchmore
complicatedinfrastructurethanNFSbecauseit actuallyis a file system.AFS presentsthenetwork
clientswith theappearanceof a singlenamespace.Thefirst level of thenamespaceexposesthe
availableAFS cells. Eachcell hasa subtreein theAFS network completewith its own domainof
authentication.Thesecellscanhave many volumeservers. Thevolumeserverscontaintheactual
file systemdata.Figure1.2 illustratestheaccessmethodsof theclients. Thefigureshows that the
metadataanddatarequestsarepassedto volumeserver. Eachvolumeserver containsa subtreeof
thefile system.

Its performanceadvantageover otherdistributedfile systemsis a resultof its cachingthe
entirefile locally whenit is opened.Cachedcopiesof files aremadeconsistentwith thefile on the
file server whenthefile is closed.Benchmarksshow that local cachingof files reducethe loadon

6

connect

localMetadata
Server

connect

localStorage Server

connect

localStorage Server

request
metadata

data request

request
data

Client

Figure1.3: Clientaccessusingdataandmetadataservers.

thefile serverallowing it to serveadditionalclients.AFSusesacallbackmechanismto keepcopies
of files thatarein thecacheandno longeropenedconsistentwith theoriginalson thefile server.
Theperformanceimprovementsin AFSarenotuniversal.If afile is notcached,afile openmaytake
longerthanwith NFS.File closesmaytake longerthanusingNFS,sincethedatamustbeflushed
to theserver if thefile haschanged.

Authenticationin AFS is doneusing Kerberos[40, 29]. Directorieshave accesslists
which allow accessesbasedon user’s Kerberosidentifier. Whena userwishesto accessAFS, she
first obtainsa Ticket GrantingTicket (TGT) from the authenticationserver. This ticket is time
limited andallows theuserto requestadditionalticketsto communicatewith theAFS file servers.
Kerberosticketsareonly usedfor authentication;noencryptionis doneon theactualfile data.Fur-
thermore,eventhoughall thenetwork packetssentbetweentheclientsandfile serversareauthenti-
catedusingKerberos,thepacketsthemselvesarenot actuallyintegrity protected.For performance
reasons,only the packet headerhasintegrity guarantees,so modificationsto the payloadof the
packetsareundetected.Kerberosreliesonsynchronizedclocksto preventreplays.If clocksarenot
looselysynchronized,theauthenticationserviceswill notwork.

DecorumFile System(DFS)[27] is a follow-on to AFS.It improvedcachingby allowing
partsof thefile to becachedinsteadof requiringthewholefile to becached.This wasnecessary
to allow for files to beopenedthatwould betoo large to cachein their entirety. Theimprovedfile
cachingalsoincludedcacheconsistency call-backswith finer levelsof granularity. Filesin DFSare
alwayskeptconsistent.Whenafile is opened,theclientobtainsa tokenfor thepieceof thefile that
is kept in its local cache.If thetokenis for writing andanotherclient requeststhatpieceof thefile,
theserver will revoke thetoken,causetheclient to flushany changesto theserver, andreleasethe
token. After thefirst client releasesits token, thesecondclient will be granteda token andmake
changesto, or read,thatpieceof thefile.

Thelatestversionof DFS[15] alsoenhancessecurity. All packetsareintegrity protected
by default andthereis anoptionfor encryptingthepacketsbetweentheclient andserver. Thefiles
themselvesarestill storedin plain text on thefile servers.

7

connect

localMetadata Server

request
metadata

Network
Storage

Object based

Network
Storage

Object based

data request

data
request

Client

Figure1.4: ClientaccessusingNASD.

StorageServers

Figure 1.3 illustrateshow metadataand data can be managedseparatelyby separate
servers. The simplestexampleof a file server making this kind of separationis the Bullet [59]
file system.It haddirectoryserversthathandlednamingandaccesscontrol,andBullet serversthat
storefile datain immutabledataobjects.Accessto thedataobjectson theBullet serverswasdone
with objectnumbersto identify adataobjectandcapabilitiesto allow clientaccessto agivenobject.
Theobjectnumbersandcapabilitiesweredistributedby thedirectoryservers. Thegreatestlimita-
tion of the Bullet file systemwasthat file dataobjectsmustbe readandwritten in their entirety.
Given that an analysisof the file systemtraffic at the time [42] showed that 75% of the files are
accessedin their entirety, theauthorsdid not view this limitation asthatgreat.

TheSwift file system[32] alsousedobjectsat thestorageservers,but they wereusedto
stripethe file dataacrossobjectson differentstorageservers. It alsodid not requirethat files be
accessedin theirentirety. Theauthorsfoundthatthis stripingboostedtheaggregatebandwidthand
processingavailableto serve filesevenwhenindividual fileswerebeingaccessed.

Becauseindividual files werestripedacrossthe storageservers,files that weresmaller
thanthestripestridemultiplied by thenumberof storageserverswerenot ableto fully obtainthe
benefitsof striping.Zebra[22] combinedtheideasSwift [32] andlog-structuredfile systems(LFS)
[51] andRAID [44] to producea file systemthat stripesthe file systemdataacrossthe storage
servers. Insteadof storing file datain objectsand the storageservers, eachclient writes update
logs to its own stripefragmentsandthenetwork storage.Theclientsusethefile manager(which
managesthemetadata)to managethemappingbetweenthefile systemnamespaceandthelocation
of thefile datain thestripefragments.

Network Attached StorageDevice

Dedicatedserversprovide an impressive increasein performance.However, the scala-
bility of the server is restrictedby factorssuchasthe processingpower of theCPU, the speedof

8

the systembus, network interface,disk interface,and the disks themselves. This is becausethe
file server mustbeinvolvedwith all transactionsbetweentheclient andthedisks.Figure1.4 illus-
tratesonesolutionto thisproblem.Thedisksaredirectlyattachedto thenetwork andallow thefile
server to marshalclient requeststo theappropriatedisks.Whendisksarenetwork attached,thefile
server is ableto managesignificantlymorestorageandtheaggregatenetwork bandwidthincreases
dramatically.

Theconvergenceof network andI/O connectiontechnologiesinspireinvestigationsinto
the useof the network as the I/O bus [52, 26]. For example,Network-AttachedSecureDisks
(NASD) [17] havebeenmadeto operatewith Network File System(NFS)andAndrew File System
(AFS).

In file systemsbuilt with NASD, thefile server providesonly file systemmeta-datawhile
theactualfile dataareprovidedby thenetwork attacheddisks.Whenfiles areaccessedby network
clients,the requestsmustbe authenticatedandpermissionschecked beforethe accessis allowed.
Thefile serversgenerallydothiskind of checking.However, if clientsareallowedto directlyaccess
thedisks,thedisksmustalsobeableto verify theauthorityof theclient’s accessto thedata.

NASD usestimelimited capabilitiesto authorizeclientsto performspecificactionsonthe
disk. Thediskhassharedsecretswith thefile managerthatareusedto createcapabilitykeys. NASD
initially usedDESandsecurecommunicationbetweenthefile server andtheNASD to coordinate
thecapabilities.Later[18], capabilitiesweregeneratedusingthesharedsecretsat thefile manager
in sucha way that theNASD couldverify a capabilitythatwassentby a client wascreatedby the
file manager. This optimizationeliminateda lot of key exchangetraffic betweenthefile manager
andtheNASD.

Whena client wishesto accessdataon thedisk, theclient getsa capabilityfrom thefile
server to presentto thenetwork disk. Theclient thenpresentsthecapabilitywith a requestto the
disk, at which point thedisk verifiesthat thecapabilityallows therequestedactionbeforeactually
carryingout theaction.

Benchmarksshow thatby allowing clientsdirectaccessto thenetwork attacheddisk, the
processorutilization of the file server decreasesdramatically. This meansthat the file server can
handlemorestorage,but doesnot eliminatethefile server altogether. Therefore,thescalabilityof
thefile server limits overall growth of thefile system.

Serverless

Theserverlessfile system(xFS) [11] wasdevelopedin conjunctionwith theNetwork of
Workstations(NOW) projectat theUniversityof California,Berkeley. Thefile systemconsistsof
a network of trustedworkstationsthatcooperateto provide thefunctionalitynormallyprovidedby
a network server. Theresultis a file systemthathasno centralrepositoryof files. Instead,thefile
systemdataandmeta-datais spreadamongthenetwork of trustedworkstations.

By spreadingthefile systemdataandmeta-dataacrossmultiplemachines,theaggregated
resourcesaremuch greaterthan what would be found on a normal file server. Theseresources
includecachesize,network bandwidth,andprocessingpower. Stripingandloggingis alsousedto
boostperformance.

While dramaticperformanceimprovementsareseenwhen the serverlessfile systemis
comparedto a morecentralizedfile system,theseperformanceimprovementscomeat a price: re-
ducedsecurity. Theclientandmanagerkernelsaretrustedto protectthefile systemfrom malicious
access.Thus,theserverlessfile systemis designedto run in a uniform securityenvironment.This

9

kind of environmentcanbefound in NOW andin a network whereall machinesareadministered
andtrustedequally.

To allow accessto the serverlessfile systemby untrustedclients, an NFS gateway is
used.Thegateway is trustedandservesasa firewall betweenthetrustednetwork andtheuntrusted
clients.NFSclientsaccessthegateway asanNFSserver. Thegateway thenmakesrequestson the
part of the untrustedclient. The gateway hasthepotentialto becomea bottleneckandaddsextra
traffic andprocessingto the requests.However, performanceimprovementsarestill obtainedvia
thecooperative cachingandlog-basedstriping.

JetFile

JetFile[21] is similar to theserverlessfile systemin thatfile systemdatais spreadacross
the clients. However, JetFileusesstorageservers to act as a repositoryof files for backupand
availability reasons.Thekey designpointof JetFileis theiruseof multicastsasthecommunications
medium.Multicastis usedto ensurecacheconsistency amountall theclientsaccessingafile system
object.

Eachfile systemobjectis givenaFileID. Associatedwith aFileID is amulticastaddress.
ScalableReliableMulticast (SRM) [16] is usedto locatea FileID, andunicastis usedto actually
retrieve thedatafrom that location. Theclient thathastheFileID will answertheSRM andserve
the datato the requestingclient. Writes aredonelocally anddo not needto be written backto a
storageserver, sincethe client doing the writes will serve the datato otherclientsby answering
SRMsfor theFileID with itself asthe location. Beforea modifiedfile is removed from the local
cache,theclient will updatethestorageserver with thechanges.

Becausewrites andreadsdo not have to go backto a storageserver andmany replicas
of a file canexist at different clients, it is importantto have a way to serializeupdatesto a file.
Serializationis doneusingaversionserver thatgeneratesversionnumbersfor files thatareupdated
by clients. Theversionrequestsarealsomulticast,sootherclientscanmark their cachedfiles as
changing.Theversionserveralsoperiodicallysendsoutatableof currentfile versionsvia multicast
to fix up any clientswhoseversiontablehasbecomeoutof sync.

1.2.2 Methods of Authentication

Usersof adistributedfile systemhavetheability to controlwhohasaccessandthekind of
operationsthatcanbeperformedon their files. Theserestrictionsarenormallyenforcedby thefile
server. However, beforea file server canallow anactionto betakenon a pieceof data,it mustfirst
discover theidentity of therequesterof theaction.Thefile server requirestheuserto authenticate
with it beforedecidingwhethertherequestis to beallowed.

In somecasesauthenticationis doneby simply retrieving the user identifier from the
request;in others,cryptographyis usedto givea strongerwayof validatingidentity.

Authenticationis not a conceptthat appliesonly to clients. Clients may also wish to
validatethat theresponseto a requestcamefrom theserver from whomthey believe it came.The
mostcommondistributedfile systemsin usetodayonly authenticateclients.

Network Based

Everydeviceconnectedto aTCP/IPnetwork hasanIP addressassociatedwith it. This IP
addressis uniqueto thenetwork. Whentwo devicescommunicatewith eachother, eachmessage

10

sentincludesthe sourceIP addressand the destinationIP address.It is convenient to authenti-
catethe sourceof a messageby checkingthe sourceIP address.Currently, IP addressesarefour
bytes,usuallywritten asfour numbersseparatedby dots.Sincenumbersarehardto work with, IP
addressesaremappedto domainnamesby DNS[36]. Thismappingallowstheuseof moredescrip-
tive alphanumericnamesfor IP devices.Many applicationsthatauthenticatemachinesbasedupon
network addressesallow theuseof domainnamesin theaccesslists.

Usually network applicationsauthenticateusers,not machines;so further information
abouttheusersendingthemessageis neededfrom theremotemachine.UNIX systemshaveauserid
associatedwith eachuser. Thisuseridis a 16-bit numberwhich is mappedto analphanumericuser
namegenerallydonevia an/etc/passwdfile or Network InformationSystem(NIS).Whenmessages
aresentto servers,theclientusuallyincludesinformationabouttheuserthatis makingtherequest.
The server is more likely to trust that the messagecontainsa valid usernameif the messageis
comingfrom a privilegedport. UNIX systemsallow only thesuperuser(root) to accessprivileged
ports(numberedbelow 1024).

In theory, the useof network addressauthenticationof machinesand privileged ports
provide a goodmeansof client andserver authentication.However, in practiceanumberof attacks
[4] cancompromisethesecurityof boththeclientandserver. Earlyon,attacksonroutingprotocols
allowed onedevice to spoof (or act like) anotherdevice by taking on the network addressof the
device andredirectingnetwork routes.Spoofingcanalsobe doneby returningfraudulentdatato
requeststo resolvedomainnamesfrom IP addresses.Also new PCoperatingsystems,suchasOS/2
andWindows, do not have a conceptof privilegedports; thusmakingit difficult to trustany user
informationsentby themachine.

Password Based

CIFS,describedin � 1.2.1,usespasswordbasedauthentication.Thistypeof authentication
is also commonin file transferprotocolssuchas FTP and HTTP. In its simplestform, a client
initiatesa connectionwith a server andsendsa useridentifieranda password that correspondsto
thatuseron theserver. Thepassword is asharedsecretbetweentheuserandtheclient.

Of courseif the password is sentin the clear, it is exposedto a network eavesdropper.
To avoid exposingthe password it may be exchangedvia a challenge-responsetype of protocol.
In theory, the challenge-responsecould be usedto validatethat both the client andserver are in
possessionof thekey; but, frequently, only theserver issuesthechallenge.

Even if the password is not sentover the network in clear text, it is still susceptibleto
man-in-the-middleandsessiontakeoverattacks.In theman-in-the-middleattack,theattacker relays
traffic betweenthe client andserver until they have finishedvalidatingeachother, at which point
the attacker startsmakingrequestsdirectly to the server actingasif it weretheclient. In session
takeover, the attacker takeson the network identity of the client after the client hasauthenticated
itself to theserver. Both attackstake advantageof the fact thatauthenticationis only doneat the
beginningof thesession.

Kerberos

Kerberos[40, 29] bypassesproblemswith network basedauthenticationby not trusting
thenetwork. It is anexampleof anauthenticationmethodthatusesa trustedthird-partyandsym-
metric encryption.TheKerberosprotocoladdstime stamps,a ticket grantingserver, andanother

11

approachto cross-realmauthenticationto theNeedhamandSchroederauthenticationprotocol[38].
Therearefour entitiesin theKerberosauthenticationprotocol: theclient, theserver, theAuthenti-
cationServer (AS), andtheTicketGrantingServer (TGS).

The client initiates the communicationbetweenclient andserver. A Kerberosticket is
usedby the client to authenticateitself to the server. The ticket containsa certificateissuedby
an AS or TGS. The certificateincludesa randomsessionkey, the identity of the client, and an
expirationtime. Thecertificateis encryptedwith thesecretkey of theserver with whomtheclient
will communicate.Theclient requeststicketsfrom anAS or aTGSusingasharedsecretkey.

Theauthenticationserver hasadatabaseof secretkeysusedby clients,servers,andticket
grantingservers.Whenaclientwishesto establishtheidentityof theuser, onwhosepartit is acting,
to a server, theclient requeststhe password from the userandthenrequestsa ticket from the AS
to communicatewith the server on behalfof the user. The AS respondswith a ticket encrypted
with thesecretkey of theserver andtherandomsessionkey includedin the ticket encryptedwith
thepassword of theuser. Ticketsreceivedfrom anauthenticationserver arecalledTicket Granting
Tickets(TGT) becausethey areusedto obtainotherticketsfrom a TGS.A TGT is usedto allow
singlesign-on.Theusershouldonly haveto giveherpasswordonceinsteadof everytimesheneeds
a ticket. Keepingthepassword in memoryis dangerous,sinceanattacker thatobtainsthepassword
couldimpersonatetheuseruntil thepassword is changed.By storingaTGT theattacker couldonly
usetheTGT until expired(usuallyon theorderof eighthours).

Oncethe client hasa TGT, it canbe usedto obtaintickets from a TGS to authenticate
theclient to otherservers. Whena client wishesto establishthe identity of its userto a server, the
client presentstheTGT andthe identity of theserver to theTGS.TheTGSreturnsa ticket to the
clientencryptedwith thesecretkey of theserverandtherandomsessionkey of theticket encrypted
with the randomsessionkey in theTGT. Theclient presentsthe ticket to theserver andthenthey
exchangeciphertext encryptedwith the randomsessionkey of theticket to mutuallyauthenticate
themselves.

Implementationsof KerberosuseDES,which cancauseproblemswhentrying to export
applicationswhich useKerberos.AlthoughDESkeys aredifficult to break,humansneedkeys that
they canremember. Keys chosenby usersareoften subjectto dictionaryattacks.In additionthe
infrastructurewhich Kerberosrequirescanbedifficult to setupandmaintain.Theexpiration time
of theticketsrequiresynchronizedclockswhich maybedifficult to achieve with network attached
storage.If clocksgetoutof synchronization,replaysandbrokenkeys canbeusedto attackservers.
Theselimitationswith othershave beendetailedby Bellovin andMerritt [3].

Public Key

In 1976,Whitfield Diffie andMartin Hellmanpublishedapaper[13] thatproposedpublic-
key cryptography. RalphMerkle hadproposedthefirst implementationof a public-key cryptosys-
tem two yearsearlier in a term paper[35]. A public-key cryptosystemconsistsof two keys: a
public-key andaprivate-key. Theprivate-key is computationallydifficult to derive from thepublic-
key. Usersof the cryptosystemdistribute their public-key keepingthe correspondingprivatekey
secret. Messagesare sentto a userby encryptingthe messagewith the user’s public-key. The
messagecanthenonly bedecryptedby theuserin possessionof private-key.

TheDiffie Hellmanalgorithmis a key exchangealgorithmbasedon public-key encryp-
tion. Thealgorithmgetsits securityfrom thedifficulty of calculatingdiscretelogarithmscompared
to the easeof doing exponentiation. In the key exchangethe two partieshave a common � and

12

� suchthat � is primitive with respectto � . Both � and � may be public. The first party picks a
randomnumber� , andthesecondpartya randomnumber� . Where � and � aretheprivatekeys.
Thetwo partiesthenexchange��� and ��� . Thesetwo resultsconstitutethepublickeys. Bothparties
now haveasharedsecret:����� , whichthey canuseasasharedsymmetricencryptionkey. Oneattack
thatDiffie Hellmanis subjectto is theman-in-the-middleattack.In man-in-the-middle,theattacker
doesa key exchangewith eachpartyasif it weretheother. Sincethereis no authenticationin the
algorithmneitherpartyknows theidentityof theother.

Authenticationcanbedonewith public-key algorithmsthroughtheuseof digital signa-
tures. In thesealgorithmsthe private key is appliedto a function alongwith the messageto be
signed.The result is thedigital signature.A recipientof a messagecanthenapply anotherfunc-
tion with the messageandthe public key andverify that the resultmatchesthe digital signature.
Therehavebeenmany digital signaturealgorithmsdevised.ThemostpopularareDigital Signature
Algorithm (DSA) andRivestShamirandAdleman(RSA).

Digital SignatureAlgorithm is partof theDigital SignatureStandard[57]. This standard
wasintroducedin 1991to providemessageauthenticationandintegrity. It doesnotprovideencryp-
tion. Thealgorithmhasthreepublicparameters:� , a primenumber, � , aprimefactorof ����� , and��� �"! #%$ �'&)(+*-,�.0/ � , where� lessthan�1�2� and �"! #%$ �'&)(+*-,�.0/ �43 � . Theprivatekey is � whichis
anumberlessthan � . Thepublickey is � �5� � ,�.6/ � . A message,7 , canbesignedby computing89�;:<��= ,�.0/ �"> ,?.6/ �@> and A �B:DC $ � :FEG: 74>�HI� 8 >J> ,�.0/ � . Thefunction E is a one-washhash
function(DSA requirestheuseof SecureHashAlgorithm [58]), and 8 and A constitutethesignature
of 7 . Anyonecanverify thesignatureby calculatingK � A $ � ,?.6/ � , L � �M:FEN: 74>POQKR> ,�.0/ � ,
L � �S:T8 KR> ,�.0/ � , and U �V:J:<�XW@Y OZ� W\[> ,?.6/ �]> ,�.6/ � , thenverifying that U �^8 .

RSA [50] predatesDSA andis muchsimpler. RSA alsoprovidesencryptionaswell as
authentication.Thepublic key consistsof � � �_� , where� and � areprime,and ` that is relatively
primeto : ���5�a> : �R�b�a> . Theprivatekey is c6`edS� ,�.0/ : ���5�a> : �f���a> . After generatingc , � and
� arediscardedandnever revealed. RSA canbe usedto sign a message,7 , by signingits hash:�g�SEG: 74> . Thedigital signatureis givenby A �M�ih ,�.0/ � . Anyonecanvalidatea signatureby
computingU � Akj ,�.0/ � andverifying that U � � .

Oneproblemwith public-key cryptosystemsis key distribution. Two partiescanmutu-
ally authenticatethemselvesonly if they know thesigningkey of theotherparty. Managingkeys
becomesan intractableproblemif everyone’s public-key mustbe distributed to every otherparty
beforecommunicationtakesplace.This problemis addressedby theuseof CertificateAuthorities
(CA). Everyoneis requiredto have thepublic-key of theCA. In additioneveryonemusthave their
public-key signedby thepublic-key of theCA. This is generallydoneby gettinga message,called
a certificate,with theparty’s identity andpublic-key in it signed.Whenonepartysendsa message
to theother, it signsthemessagewith its public-key andsendsthemessagewith thesignatureand
its certificate. The otherparty canverify the owner of the public-key via the certificateand the
authenticityof themessageby usingthepublic-key containedin thecertificate.

Oneof theproblemsof certificatebasedauthenticationis revoking acertificate.A certifi-
catewouldneedto berevokedif theprivate-key waslost,for example.Certificaterevocationis dealt
with in two ways: expiration dates,andCertificateRevocationLists (CRL). Eachcertificatecon-
tainsanexpirationdatethatlimits theamountof time thatacompromisedkey canbeused.A CRL
containsa list of certificatesthatareno longervalid. This list is signedby theCA anddistributed
periodically. Becauseeachcertificatehasanexpirationtime, thelist will notgrow indefinitely.

The two major drawbacksto digital signaturesarekey sizeandspeed.Both DSA and
RSA requirekeys at least512to 1024bits in lengthto besecure.MAC andsymmetricencryption

13

keys in generalareconsideredstrongif they are128-bitsin length.DSA andRSAarealsoordersof
magnitudesslower thatMAC andsymmetricencryptionalgorithms.This slow down is largely be-
causeof thekey sizesinvolvedandtheoperationsperformed.Theoperationsrequiredto usepublic
key authenticationaresubstantialandmake it unsuitablefor usewith network attachedstorage.

MessageAuthentication Codes

MessageAuthenticationCodes(MAC) providebothmessageauthenticationandintegrity.
A MACis theresultof applyingacryptographicone-wayfunctiontoasecretkey andandamessage.
The MAC is thenappendedto the messagewhenthe messageis transmitted.Typically the same
secretkey is usedto verify andgeneratetheMAC. To verify, thereceiver simply appliesthesame
secretkey asthesenderandthemessagereceived to the function. If the result is the sameasthe
MAC includedwith the message,the receiver is assuredthat the messagearrived intact andwas
generatedby someonein possessionof thesecretkey.

EncryptionfunctionssuchasDEScanbeusedto implementone-wayfunctions.However,
plainone-way hashfunctionssuchasMD5 [49] or SecureHashAlgorithm (SHA) [58] canbeused
asa MAC function. The MAC function we us that is basedon SHA andMD5 is calledHMAC
[30, 2].

MACsareusefulsincemessageintegrity is important,andaMAC providesbothmessage
integrity andauthenticationin onecalculation.HMAC, in particular, avoidsencryptionrestrictions
thatarepresentin many countries.

Oneof theproblemswith MACsis thatbothpartiesinvolved in thecommunicationmust
bein possessionof thesamesecretkey, soa methodof key distribution mustbeemployed. A key
distributionschemebasedonatrustedthird partyandsymmetricencryptionkeys,suchasKerberos,
may be employed. A public key distribution schemecanalsobe employed usingpublic keys for
encryption,not justauthentication.

A novel schemefor authenticationand key distribution basedon HMAC calledKryp-
toKnight [5] couldalsobeused.In form it is muchlike Kerberos.It usesa trustedthird partyand
hasticketsthatareusedto initiate communicationbetweentwo parties.However, unlike Kerberos
KryptoKnight usesonly an elementaryform of encryption(in the form of a one-timepad) that
allowedIBM to getapproval for its usearoundtheworld without restriction.

Thesessionkey is generatedby theTrustedThird Party(TTP).Eachpartywill receive the
sessionkey encryptedwith a one-timepadthatonly the receiving partyandtheTTP canrecreate.
The one-timepadis generatedby the TTP by generatinga MAC for someof thecommunication
dataanda randomstringsentby thereceiver. TheMAC is not sentby theTTP, but is usedasthe
one-timepad. Sinceboth theTTP andthe receiver sharethesecretusedwith theMAC, both can
regeneratetheone-timepad.Thisallows thereciever to decryptthesessionkey sentby theTTP.

KryptoKnight doesnot dependon synchronizedclocks. Insteadit usesone-timerandom
numbers(nonces)to ensurethefreshnessof amessage.

The simplicity andspeedof HMAC algorithms,aswell astheir immunity from restric-
tionsonencryption,makethemperfectfor usein network attachstorage.Theauthenticationscheme
describedin chapters3 and4 makesheavy useof HMACsandmany of theconceptsusedin Kryp-
toKnight.

14

CFS

The CryptographicFile System(CFS)[6] isn’t actuallya file systemitself, insteadit is
a virtual file systemthatservesasanencryptionlayerbetweentheuseranda shadow file system.
All thefile dataanddirectorydatais storedencryptedon theshadow file system.Theuserprovides
keys to theCFSwhich it usesto decryptfilesanddirectoriesfrom theshadow file systemfor reads,
andencryptfiles anddirectoriesfor writes. Thereis a one-to-onemappingbetweenthefiles on the
shadow file systemandCFS.Theshadow file systemcanbeany localor network file systemon the
machine.

Keepingthedataencryptedon theshadow file systemallows for convenientmanagement
of backups.Thebackupadministratorsareableto copy thefiles to tape,but thedataitself is not
compromised.Theconfidentialityof thefile systemis alsomaintainedif adistributedfile systemis
usedsinceCFS,in effect,providesend-to-endencryption.

Thereis somedatathatis notencryptedby CFS.File sizes,accesstimes,andthestructure
of thedirectoryhierarchyareall keptin theclear. Thus,CFSis vulnerableto traffic analysisattacks
from real-timenetwork datacollectionandfile systemsnapshots.In addition, the authentication
andintegrity of thedatais provided, in part,by theshadow file system.Old datacanbereplayed
without detection,if the encryptionkey hasnot beenchanged. If the dataitself doesnot have
integrity checkstheciphertext maybeableto bechangedwithoutdetection.

1.3 Overview of the Thesis

In thefollowing chapterswepresentsecurenetwork attachedstoragethatis ableto lever-
agethe benefitsof extremely distributed file systems,suchas xFS, without sacrificingsecurity.
Thenext chapterpresentstheobjectmodel,referredto asSCARED(SecureArray of RemotelyEn-
cryptedDevices),usedby thenetwork attachedstoragethatwill beleveragedthroughoutthis thesis.
Theobjectmodelallows us to avoid thebottleneckof a managementserver for metadata,suchas
block location, accesscontrol, and cachecoherency, as well as, the complexity of a distributed
managementprotocol.

An authenticationprotocolfor SCAREDwill bepresented,followedby a cryptographic
analysisof the protocol. SCAREDprotectsthe datafrom unauthorizedaccess,without resorting
to intensive cryptographicoperations. The protocol also allows the key distribution to be done
independentof thestoragedevice, makingit possibleto integratesecuredevicesinto any existing
securityframework. Themainadvantagesovercapabilityprotocols,suchasNASD,aretheability to
shareaccesskeys, identity keys,anduserkey derivation. Identity keys areespeciallyadvantageous
becausethey reducethenumberof keysmanagedby theclientsandremovetheneedfor afile server
to createcapabilities.The cryptographicoperationaremuchfasterthanthoseusedin public key
cryptography. And theinfrastructurerequirementsaremuchsimplierthanKerberos.

Finally, a distributedfile system,Brave, built usingSCAREDdeviceswill bepresented.
Brave runsat eachclient, andprovidesfile semanticsfor thedatastoredon theSCAREDdevices.
The fundamentaladvantageof Brave over existing file servers is that it is serverless,so it is not
limited by thescalabilityof asingleserver. It hasthisadvantagewithoutsacrificingsecurity.

15

Chapter 2

The SCARED Object Model

In order to increasethe aggregatebandwidthandprocessingto network storage,it has
beenproposedto directly attachstoragedevices to the network. This is in contrastto the more
mainstreamideaof putting the storagedevicesbehindnetwork file servers. Examinationof past
literaturerevealsthattheideaof clientsdirectly accessingstorageserversis notnew.

Previous file systemssuchas Zebra[22] and Swift [32] stripedthe file systemacross
multiplenetwork storageserversthattheclientsdirectlyaccessed.Zebrahadalargeblockinterface,
calledfragments,into whichit loggedclientrequestsandSwift hadamoreobjectbasedabstraction.
TheBullet [59] file systempresentedanextremelysimpleobjectbasedabstractionto interfaceto
thenetwork storageserversthatstoredimmutableobjects.MorerecentlyPetal[31] groupsmultiple
storageserversinto whatis effectively a largeblockdeviceontowhich theclientsmapadistributed
file system,Frangipani[54]. GPFS[25] andxFS[11], theserverlessfile systemfrom Berkeley, use
theclientsin a clusterasstorageserversto form a singledistributedblock device. NASD [17] and
Trapeze[10], on theotherhand,useanobjectabstractionwith network attachedstorage.Of course
this is only a small sampleof currentandpastwork, but it doesshow a long history of network
attachedstorageandtheiraccessmethods.

This chapteraddressesthe advantagesof an object interfaceover a block interfacefor
network attachedstorage,andit proposesan objectmodel that is usedin our versionof network
attachedstorage. Given that most local storageinterconnects,suchas IDE andSCSI,areblock
based,it seemsnaturalto have a block interfaceto network storage.We refute this intuition by
presentingfour areasin whichanobjectinterfacehassignificantadvantagesover ablock interface:
additionalsemantics,storageallocation,caching,andauthentication.

Thenext sectiondescribessomeof theadditionalsemanticsthatcanbeaddedto anetwork
storagedevice to increasetheoverall efficiency of a distributedfile systemusingnetwork storage.
Section2.2 presentstheallocationproblemsof network attachedstorageandtheir solutionsusing
an objectmodel. The advantagesof objectaccesswith respectto cachingandauthenticationare
presentedin � 2.3and � 2.4. Thechapteris summarizedin � 2.5.

2.1 Object Abstraction

As mentionedin the introduction,usingan objectmodelon the network storageallows
additionalsemanticsat thestoragedevice. Someof thesemanticinformationis simply a resultof
theobjectinterface.For example,if ablockinterfaceis used,therelationshipbetweendiskblocksis

16

not easilyderived. However, in anobjectbasedmodelthenetwork storageknows to whichobjects
ablockbelongsandcanoptimizeaccordingly. Oneof themainoptimizationsof theBullet [59] file
systemis to storeall blocksof afile contiguously.

Theobjectinterfaceis evenmoreadvantageousthantheblock interfacewhenfunctional
semanticsareaddedto the objects. The file systemsreviewed in the introductionthat hadan ob-
ject interfacesupportedlittle more than the operationsthat can be doneon normal file; namely
read,write, andtruncate.Thesefunctionalsemanticsareenoughfor storingfiles in objects,but if
directorydatais to bestoredin objects,moreoperationsneedto beaddedto theobjectinterface.

In the following sections,we presentthe operationsfor two object types: dataobjects,
andmeta-dataobjects.Thedataobjectssupportoperationsusuallyfound in anobjectinterfaceto
supportfile objects. The meta-dataobjectshave additionalsemanticsto supportdirectories.The
commonattributesand operationsof both typesof objectswill be presentedin the next section
beforetheoperationsspecificto eachobjecttypeareintroduced.

2.1.1 BasicSemantics

Justasablock interfaceto storageusesblocknumbers,objectsareidentifiedby anobject
number, whichwill bereferredto astheobjectidentifieror OID. ClientsuseOIDsto accessobjects
just asthey would a block numberto accessblocks. An importantdifferenceis that the mapping
of an OID to physicalblocksrequiresadditionalmeta-datathat themappingof block numbersto
physicalblocksgenerallydonotneed.This is becauseobjectsarenotfixedsizeandtheblocksthey
usewill grow andshrinkover time.

AnotherdifferencebetweenblocknumbersandOIDsis thatOIDsarecreatedanddeleted.
In our objectmodel,we do not reuseobjectOIDs. Sinceour OIDs are128bits we do not needto
worry aboutexhaustingoursupply.

Our objectabstractionalsoallows thestorageto manageobjectmetadatasuchasaccess
timesandsize,aswell asallowing clients to attachtheir own metadatato an objectsuchasac-
cesslists. This allows thestorageto moreactively participatein a distributedfile system,thereby
removing muchof theloadfrom thedistributedfile servers.

Whenan object is created,the createrequestspecifieswhich type of object to create.
In this chapterwe outline two typesof objects: dataobjectsandmetadataobjects. We will first
describethedataobjects,which is thesimplerof thetwo, followedby themetadataobject.

2.1.2 Data Object Semantics

Dataobjectssupportthesemanticsassociatedwith files in a file system.Basicallya data
objectrepresentsa logically contiguoussetof datablocks. The storagedevice is responsiblefor
mappingthesetof blocksinto actualphysicalblocks,whichmayor maynotbecontiguous.

Figure2.1, shows a representationof the structureof a file object. Commonto all ob-
jectsarean informationalblock, the info block, that is accessedin its entiretyby the clientsand
timestamps.If ACLs areusedto restrictaccessto the object,an ACL will alsobe present.The
dataobjectalsohasfile dataassociatedwith it. This is avariablelength,logically contiguoussetof
blocks.They areaccessedbasedon theiroffsetinto thedataobject.Blockscanbereadandwritten.
Writing pasttheendof objectcausestheobjectto grow. Theobjectscanalsobetruncated.Using
theseoperationsandsemantics,it is simpleto mapfile operationsontodataobjectoperations.

17

Info block
ACL

File data
Timestamps

Figure2.1: Thestructureof afile object.

ACL

etag ltag entry data

etag ltag entry data

etag ltag entry data
...

Info block

Timestamps

Figure2.2: Thestructureof ametadataobject.

Later sectionswill show the advantagesof the objectabstractionin termsof cacheco-
herency, accesscontrol,andblockallocations.In additionto theseadvantages,astoragedevicecan
alsotake into accounttherelationshipbetweenblocksthatis inherentin thedataobjectabstraction.
Many studies[1, 43] have shown that themajority of file accessesaresequential.By knowing the
sequentialorderingof physicalblocksin the object,the storagedevice cando read-ahead.Since
accessesaredoneusinganOID andnotaphysicalblock,thediskcanreorganizephysicalblocksof
anobjectto becontiguous,andmoveoftenusedobjectsto themiddleof thestoragemediain order
to optimizeperformance.

Using thedataobjectabstraction,the loadon a file server canbegreatlyreducedby al-
lowing clientsto make dataaccessesdirectly to thestoragedevices.Many of thesameadvantages
gainedby moving file semanticsto thenetwork storagecanalsobe seenby moving directoryse-
manticsto thestoragedevices.

2.1.3 Metadata Object Semantics

Sincethe semanticsand operationsof directoriesare so different from files, we have
the metadataobject type. A file systemusesfiles to storethat dataof the file system. The files
themselvesareaccessedthroughdirectories.Thedirectoriesorganizefiles into a hierarchalname
spaceandprovide locationinformationaboutthefiles, or in otherwords,thedataaboutthedata–
themetadata.

Figure2.2,shows a representationof thestructureof a metadataobject. Thestructureis
similar to the dataobjectexcept that insteadof file data,a metadataobjectorganizesthe databy
entries.This is becausedirectorydatais organizedinto directoryentriesin contrastto acontiguous
setof blocksusedto storefile data.Theseentriesareusedto mapnamesto objects,justasdirectory
entriesin a localfile systemmapanameto diskblocks.Whendefiningtheabstractionfor metadata

18

objects,we wantedto ensurethedatastructuresenabledthestorageof metadatawithout dictating
its structure.For this reasonentriesconsistof a lookuptag,anentry tag,andvariablelengthentry
data.Thetagsareusedto accesstheentrydata,but entrydataitself hasnomeaningto thestorage.

Thereare two indicesto the directoryentries: the lookup tagsandthe entry tags. The
lookuptag is usedto optimizethe lookupoperation,which is oneof themostcommonoperations
on metadataobjects[60]. The lookup tag is set by the clientsof the storagedevice andcanbe
changedat any time. Theentry taguniquelyidentifiesanentry in a metadataobjectandcannotbe
changed.It is usedto identify theentry to beoperatedon by all themetadataoperationswith the
exceptionof lookup.

Whenan entry is createdin a metadataobject, a uniqueentry tag is generatedby the
storagedevice to identify thenew entry. This tagis notonly uniqueat thetimeof creation,but will
never be generatedagainfor that directoryobject. As in the caseof OIDs, thereis no dangerof
runningoutof entrytagssincethetagsare128-bitnumbers.

The entry tag is also usedto changethe lookup tag andentry dataof an entry and to
deleteanentry. Whenenumeratingtheentriesof ametadataobject,theentrytagis alsoused.Entry
enumerationoccurswhentheclient needsto list thecontentsof a directory. A storagedevice will
try to put asmany of theentriesinto a responseto a requestfor enumerationasit can. If all of the
entriescannotfit into a singleresponse,thenetwork storagewill indicateto theclient theentrytag
of next entryin theenumeration.

By usingmetadataobjectstheloadof thefile server canbefurtherreduced,if not elimi-
natedentirely. Themetadataabstractionprovidesenoughsemanticsto allow efficient accessto the
entries,aswell asallow accesscontrol lists to limit accessto specificmetadataoperations.

2.2 Block Allocation

Usingtheobjectabstractionsfrom theprevioussectionwe cansimplify themanagement
of block allocations.Whenstoringdataon network storagedevices,caremustbetakento allocate
physicalblockson the disk in a consistentmanner. The sameblocksshouldnot be allocatedto
differentfile systemobjectsor file systemdataandmetadatacould get overwritten. By usingan
objectabstractionat thestoragedevice, thephysicalblockallocationscanbemanagedlocally at the
device.

Whenusingblock orientednetwork storagein a distributedfile system,a distributemes-
sagingprotocolor acentralservermustbeusedto managetheallocationof blocksto thefile system
objects.For example,FrangipaniandGPFSusea groupmessagingprotocol,andStorageTank[7]
usesa server to manageallocation.Usinggroupmessagingprotocolsimposetopologyrestrictions
on thenetwork. Not only mustall clientsbeableto communicatewith eachother, but slow clients
will affect the fasterclients. Theserver basedapproachintroducesnetwork latenciesto allocation
requests,aswell asanotherpoint of failure. All of theseproblemsaresolvedby “centralizing” the
allocationof blocksat thestoragedevice.

As mentionedin theprevious section,objectsarelogical entitiesasopposedto physical
entities.Sincethemappingof theselogicalentitiesto physicalblocksis doneby thedeviceandnot
exposedby thestoragedevice,block allocationis donetransparentlyto theclients.Theallocations
canalsobe doneatomically, sincethe block managementis local. Finally the clientsneedonly
communicatewith thestoragedeviceto allocatestorage,sinceall of themanagementis donelocally
at thedevice.

19

2.3 CacheManagement

The cachemanagementproblemis very similar to the allocationmanagementproblem.
Clientsneedto benotifiedwhenobjectsthey havecachedchangesothey caninvalidatetheircache.
As with allocationmanagement,cachemanagementof block devicesis usuallydoneusingagroup
messageprotocolor a cachemanagementserver. Conceivably, a block orientednetwork device
could directly invalidateclient caches,but a lot of informationwould needto be maintainedper
client to beableto know whichblockstheclientshave in theircache;thismayimposealargemem-
ory requirementfor storagedevices. Theobjectabstractionhelpsthecachemanagementproblem
by providing anicelevel of granularityof cachemanagement.

It shouldbenotedthatnotall distributedfile serversinvalidateclient caches.Some,such
asNFS,useda timerbasedapproachto invalidatetheir cache.However, timerbasedapproachesdo
nothave goodconsistency guaranteesor goodperformancecharacteristics.

Thereis awholerangeof cacheconsistency modelsthatcanbeimplementedontopof the
objectabstraction.Wechoseaconsistency modelthathasasmallprocessingandmemoryoverhead
andstill providesacceptableconsistency andperformance.Strongerguarantees,suchasthoseof
DFS,couldalsobeimplementedif sufficient memorywereavailable.

Call-backsfrom thestoragedevicesareusedto invalidateclient caches.Clientsregister
interestin specificobjectson the disksandarenotified of changes.Whenever an objectchange
hasbeencommittedto thenon-volatile storage,a notificationwill besentto interestedclients.The
specificsof thenotificationdependson thetypeof object.Whenaclient removesanobjectfrom its
cache,it notifiesthestoragethatit no longeris interestedin theobject.

Sincedataobjectschangeoften,andusuallyinvolve multipleupdates,thenotificationfor
dataobjectupdatesdoesnothappenuntil changeshave beencommittedon thestoragedevice. This
allows clientsto sendmultiple write requeststo thestoragedevice beforeactuallycommittingthe
changesto non-volatile storage.It alsoavoidshaving to sendcacheinvalidationnoticeseachtime
awrite requestis received.Theinvalidationnotificationwill tell theclient exactlywhichpartshave
changedsoonly thosepagesin thecachecanbeinvalidated.

Changesto metadataobjectshappenmuchlessoftenthanchangesto dataobjectsin gen-
eral[60]. Sowhenachangehappens,notificationsaresentimmediatelyto interestedclients.These
notificationswill includetheentrytagsof theentriesthathave changed.

In addition to cacheinvalidation notifications,a versionnumberis kept by the storage
device for eachobjectas well as eachdirectory. The versionnumberis incrementedeachtime
the objector an entry changes.This allows, for example,clients to revalidatetheir cacheson a
reboot.It alsoallows for conditionalupdatesof objectsandentriesby allowing theclient to request
an updateonly if theversionof theentry or object is the onetheclient expects.Sincewe do not
have a locking mechanismat the network storagedevice, theseconditionalupdateshelp to avoid
consistency problemswhensimultaneousupdateshappen.

By usinganobjectabstraction,weareableto providealooseconsistency protocolsimilar
to AFSwith goodperformancecharacteristics,while avoidingtheoverheadof groupmessagingpro-
tocolsor anotherserver. Thelow overheadof theprotocolreducesthememoryandcomputational
requirementsof thestoragedevice.

20

2.4 AccessControl

Justastheobjectabstractionallowedusto take into accountthedifferentobjecttypesto
improve thecachemanagement,we canusetheobjectabstractionto control thekindsof accessto
theblockson thestoragedevice basedon their objecttypes.Accesscontrol is oneareawherethe
advantagesof the objectaccessover block accessis very clear. Currently, block orientedaccess
devicesallow only coursegranularityof accesscontrolof thenetwork storage.Usuallyclientsare
grantedreador write accessto wholepartitions.This coursegrainedaccesscontrolis not sufficient
whenusedin a file system. Accessneedsto be grantedto blocksbasedon the object to which
the blocks belongand the kinds of operationsthat can be performedon the object. The object
abstractionallows usto do exactly that.

To controlaccessto storage,thedevice mustbe ableto eitherknow what theclient can
do, or know on whosebehalf the client is acting. Capabilitiesareusedto convey to the network
storagewhat theclient cando. If thestoragedevice is ableto identify theclient, anaccesslist for
therequestedobjectis checkedto grantaccessto theobject.Thenetwork storagewehavedesigned
usesbothof theseaccessmethods.

Capabilitiesare lists of accessrights encodedin a block of bytes. The accessrights
cryptographicallyderived in sucha way that thestorageis ableto validatetheir authenticity. The
encodingallowsthedeviceto know thepermittedoperationsandthetargetsof thoseoperations.For
example,a client maypossessthecapabilitythatallows it readaccessto anobject. Whena client
presentsa storagedevice the capability, the device can validatethe capability cryptographically
and the checkthat the requestedoperationis permittedby the capability. Capabilitieshave the
advantagethatthestoragedoesnothave to know theidentityof theclient,sothedecisionto permit
theoperationis madequickly basedsolelyon thecapability.

Oneof thedifficultieswith usingcapabilitiesis distributing thecapabilitiesto theclients.
Becausecapabilitiesallow suchfine grainedaccessto objectson thedevice, therearea lot of them
that canbe generatedandwill needto be distributed. The otherdifficulty is revoking or “taking
back” capabilitiesthata client possesses.Sincea capabilityis just a block of bytes,theclient can
make asmany copiesasit wants,andthe administratorrevoking accesscannotbe surethe client
hasnot keptacopy of thekey.

Usuallya capabilityneedsto berevokedbecausetheclient lost accessto anobject.This
kind of revocationcanbeavoidedaltogetherby usedaccesscontrol lists (ACLs). Whenanobject
hasan accesscontrol list, a client canbe deniedaccessby removing his identifier from the list.
For this reason,it is often more convenient to useACLs and identifiers insteadof capabilities.
Identifierscanalsobe advantageousto the clientssincethey reducethe numberof keys a client
needsto manage.Thereasonfor thereductionis thatinsteadof requiringa capabilitykey for each
objecton adevice thata clientcanaccess,it only needsasinglekey to identify itself to thedevice.

Whenidentifiersareused,thestoragedevice mustmaintainanaccesscontrol list (ACL)
for eachobjecton thedevice. TheACL constitutesadditionalmetadatathat thedevice musttrack
for eachof its objects.TheobjectabstractionreadilysupportsACLssincethegranularityof access
is at theobjectlevel. Justaseachobjecton thedisk is protectedby anaccesscontrol list, thedisk
itself is alsoprotectedby an accesscontrol list. The disk’s accesscontrol list controlswho can
createobjectson thedisk andwhocanchangethedisk’s accesscontrollist.

By usingcapabilitiesandidentifierswith accesscontrollists,we canprovide accesscon-
trol for all theobjectsmanagedby thestoragedevice. Theability to do this level of accesscontrol
wouldbedifficult if ablock server wereused,whichexplainswhy currentdistributedblockservers

21

do notdofinegrainedaccesscontrol.

2.5 Summary

The SCARED object model is “as simple as possible,but not simpler”. It allows the
clientssimpleabstractionsto modelbothdataandmetadatafile systemobjects.It alsoeliminates
theneedfor client to clientdistributedmessagingprotocolsor additionalserversby centralizingthe
managementof objectallocation,access,andcachingat thestoragedevice.

Theobjectallocationsallow for efficient allocationof blocksat thedisk without clients
having to coordinatetheiractivities. Futureoptimizations,suchasblockplacementbasedonaccess
patterns,canbedoneat thedisk transparentlyto theclient.

Not only doesthe objectabstractionhelp with the allocationof blocks, it alsoenables
themto beefficiently cachedat theclient. Thecachingpolicy we have presentedallows clientsto
havecacheconsistency with very little overheadat thestoragedevice. Thesmalloverheadproperty
is a very importantonesincemany of the network attachedstoragedeviceswill have extremely
limited resourceswhencomparedto conventionalfile servers.

Not only do objectshelpwith cachingandallocation,but they alsohelpprotectaccessto
the datastoredon the network. Sinceclientscanaccessthe network storagedirectly, the storage
devices must be able to restrict accessto their data. The next chapterwill build on the object
abstractionpresentedin thischapterto provide strongaccessprotectionsto thedataon thedevice.

22

Chapter 3

Deriving Keysfor Authentication

From a securityperspective, the big differencebetweena hostattachedstoragedevice
anda network attachedstoragedevice is that the former knows exactly from which hostrequests
arecoming. Requeststo a network attachedstoragedevice canoriginatefrom any nodeon the
network. In somecases,thenetwork andhostsonthenetwork areconsideredtrusted,in whichcase
the network providesinformationaboutthe identity of the requester, but in generalnetworks are
considereduntrusted.Themostcommonnetworking protocol,TCP/IP, is vulnerableto avarietyof
attacksthatillustratetheeaseof fakingtheidentityof nodeson anIP network [4].

Thetwo mostcommonwaysof overcomingtheidentityproblemaresymmetrickey based
authenticationschemesandpublic key basedauthenticationschemes.Both of theseschemesusea
trustedthird party to give out ticketsor certificatesto clientson thenetwork to helpidentify them-
selves to otherclients. Symmetrickey basedauthenticationschemesusually requirea ticket for
eachpair of clientsthatarecommunicating;whereas,public key basedschemesrequireonly one
certificateperclient. Thebig disadvantageof publickey cryptographyis thecomputationallyinten-
sive operationsthatareinvolved. Both of theseschemesarewidely usedin the form of Kerberos
[40] andSecureSocket Layer(SSL)[12].

While KerberosandSSLcould beusedto fulfill thesecurityneedsof network attached
storage,therearea few requirementsthat make it necessaryto find a betterapproachto security.
First, Kerberoshasa large infrastructureassociatedwith it. This implies that choosingKerberos
would forcethenetwork storageto only bedeployed in a Kerberosenvironment.Thelarge infras-
tructurealsoincreasestheadministrative costsfor eachstoragedevice. SSLalsohasanassociated
infrastructure,albeitsimpler, thatwould alsorequirethedevice to only bedeployed in anSSLen-
vironment. In addition, the processingrequirementsmake it unfit for low endnetwork attached
storage.Finally, bothschemesrequireencryptionin thedevice which meansthey areexport con-
trolled [55].

We have solved the problemby using one authenticationschemebetweenclients and
network storage,andanotherbetweentheclientsthemselves. To overcomesomeof theproblems
mentionedabove, we have devised an authenticationschemebasedon key derivation using one
way hashes.Thesekeys have identitiesandcapabilitiesassociatedwith them. The keys canbe
exchangedamongtheclientsusingwhateverexistingprotocolsarein place,e.g. SSLandKerberos.

Thekey derivation,its associatedprotocol,andtheobjectmoduleexplainedin theprevi-
ouschapterarecollectively referredto asSCARED(SecureArray of RemotelyEncryptedDevices).
The next sectionexplains the environmentin which SCAREDis used. Section3.2 explains the
methodof key derivation. Theway capabilitiesandidentitiesareassociatedwith thederivedkeys

23

Kd�-�Secret�key�shared�
with�admin

Administrator Client

Kd�-�Received�with�disk Kb�-�Received�from�Admin

Distributes�keys�to�clients
over�secure�channel.

Clients�communicate�over�untrusted
channels�using�keys�received�from�
admin.

Figure3.1: Theadministrator, thestoragedevice,andtheclientarethethreerolesin SCARED.The
key derivationschemeallows theadministratorto generateaccesskeys for theclients.

is explainedin � 3.3. Accessrevocationis discussedin � 3.4. A securityanalysisof thederivationis
donein � 3.5,and � 3.6summarizesthischapter.

3.1 Distrib uted SCARED Envir onment

In theSCAREDenvironmenttherearethreeroles: theclient, theadministrator, andthe
storagedevice. The administratoris the owner of the storagedevice. Shecontrolsaccessto the
device. Theclientsusethestoragedevice to storetheir data. SCARED’s purposeis to enablethe
administratorto grantaccessto the network storage,andallow clientswith accessto sharetheir
accessrightswith otherclients.

Initially, theadministratoris theonly onethatcanaccessanetwork storagedevice. When
anadministratorattachesthestoragedevice to thenetwork it will shareasecretkey with thedevice,
whichallows it to administerthedevice. Theadministratorusesthiskey to deriveotherkeysfor use
by theclients.Clientsusethederivedkeys to accessthestoragedevices.

Figure3.1 illustratesconceptuallythethreerolesin theSCAREDenvironment.Initially,
theadministratorwill sharea secret,l h with thestoragedevice. Theadministratorwill use l h to
derive new keys. In this example,a new key l�m is derived andpassedvia a securechannelto a
client. Theclient canthenuse lnm to accessthenetwork storageover anuntrustednetwork.

An importantfeatureof theSCAREDprotocolis that theadministratordoesnot needto
beonlinewith thediskwhengeneratingsecretsfor theclients.Not only doesthis relaxthenetwork
topologyrequirements,but it alsoallows theadministratorto give new secretsto theclientsusing
off-line methodssuchase-mail.

TheSCAREDcommunicationprotocolreliesonsharedkeys to authenticateaccessto the
devices. Not only mustthesekeys besecret,but they mustalsocarry informationabouttheclient
in possessionof thekey, sothat thestoragedevice cancheckaccess.Thenext sectionexplainsthe
methodof key derivation that SCAREDuses,and � 3.3 explainshow the informationusedin key
derivationis usedto hold informationaboutthekey.

24

3.2 Key Distrib ution Without KeyExchange

We wantedto keepthe device from having to do key managementor be involved with
distributing keys to clients,sothestoragedevice itself knowsonly aboutonekey: thediskkey. This
key is sharedby thestorageadministratorandthestoragedevice. It is thekey uponwhichall other
keys arebased,andis usedto bootstrapthesecurityof thedisk. We assumethat theadministrator
receivesthediskkey with thestoragedevice. Thismaybein theform of asmartcard,disk,or paper
thatcomeswith thedevice. Anothermethod,which is usedby NASD, is to allow theadministrator
to generateandsendthedisk key to thediskwhenit is first connectedto thenetwork.

From this initial disk key we derive new secretsusinga keyed one-way hashfunction,EG:Foqp lr> . Thecryptographicpropertiesof this functionwill beanalyzedin � 3.5,but for now three
importantpropertiesshouldbe noted. First, if l is secret,thanthe resultof the function is also
secret.Also, it is computationallydifficult for anattacker to find l given EN:Fo4p lr> and o . Finally,
it is computationallydifficult to find anothero�s and l s suchthat l sR�tEN:Fo�sTp lg> if l is not
known. Fromananalyticpointof view, weassumethat EN:Fo4p lr> is apseudo-randomfunction[19]
whereD is theargumentof thefunctionand l is thekey.

Usingthekeyedone-way hashfunction,anadministratorcanderive new keys for clients
by hashingdata,representingtheattributesof thenew key, usingthediskkey asthekey to thehash
function. If a client presentsthedatausedto generatethekey to thestoragedevice, thedevice can
regeneratethesecretsinceit is in possessionof thedisk key. Clientscanalsogeneratenew secrets
by hashingnew key datausinga key in their possession.Thesenew keys canthenberegenerated
by thedisk givenall of thedataassociatedwith thekeys from which they werederived.

In order for keys to be meaningfulto the storagedevice, they needto have somedata
associatedwith themto convey identity andcapabilityalongwith otherdataassociatedwith the
key. Thehashfunctionbindsthedataassociatedwith akey, referredto asthepublickey data,to the
key itself.

Thepublickey dataallowsthestoragedeviceto derivenotonly thekey theclient is using,
but alsoto checkthe accessthe client hasto the device. Becausethe key is derived usinga one-
way hashandthekey data,whena key is usedby a client, theclient mustalsosendthekey data
associatedwith thekey. Thebindingbetweenthekey andkey dataallows theadministratorto put
informationin thekey datathatthestoragedevice usesto grantaccessto theclient. By includinga
expirationdateaspartof thekey data,theadministratoris alsoableto limit thelifetime of thekey.

3.3 Key Types

Theauthenticationneedsof a client andstoragedevice differ, so thekeys they usealso
differ. Theclient needsto verify theresponsesreceivedfrom astoragedevice actuallycamefrom a
givendevice. Thedevice needsto verify thattheclienthastheauthorityto makea request.Whena
key is usedby a client to senda requestto thestoragedevice, we referto thekey asanaccesskey.
A key usedto verify theorigin of a response,is referredto asa responsekey.

Anotherway of classifyingkeys is by thetypeof publicdataassociatedwith them.If the
dataassociatedwith a key hasto do with thetypeof operationsthatcanbedoneusingthekey and
thetargetsof theoperations,thekey is referredto asa capabilitykey. If thedatahasto do with the
identity of thepossessoror groupmembership,thekey is referredto asanidentitykey.

Both capabilityandidentity keys canbe usedasaccesskeys. If theobjectshave access

25

1, 1

1,1 = H(

2,1, 2

2 = H(2,1+ 1))

data K

data KK

datadata K

K datadata K

Bob Administrator

K

K

Brenda
Storage

Figure3.2: Theadministratorsharesakey, K, with thestoragedevicewhichis usedto generatekeys
to begivento theclients.In thisexamplethemessagesmustbeexchangedoversecurechannels.

lists associatedwith them, the device will useidentity keys to checkaccess.If accesslists are
not used,thedevice mustcheckaccessusingcapabilitykeys. Accesslists imply fewer keys to be
managedat theclients,but moremeta-datato bemanagedat thedevices. Capabilitykeys require
very little meta-datato bemanagedat thedevices,but morekeys to bemanagedby theclients.

Sincetheclientsareonly interestedin authenticatingthedevicethatgeneratedaresponse,
responsekeys arealwaysidentity keys. A client receivesa responsekey generatedspecificallyfor
thatclient by theadministratorto authenticateresponsesfrom aspecificdevice.

3.3.1 GeneratingCapability Keys

A capabilitykey allowsaspecificoperationto beperformedonastoragedevice. Thetype
of operationpermittedandthedetailsof thatoperationaregovernedby the datausedto generate
thekey.

Thekey givento theclient is generatedby hashingthediskkey with thekey data.There-
sultof thehashis thecapabilitykey. Thecapabilitykey andthedatacorrespondingto thecapability
key aregivento theclient. Notethatthecapabilitykey mustbekeptsecretsoasecurechannelmust
beusedto sendthekey to theclient.

A capabilitykey maybeusedto generateanothercapabilitykey thatis a restrictedsubset
of the capabilitiesof the first key. This canbe doneby anyonein possessionof a capabilitykey,
not just the administrator, which makes it convenient for highly distributed file systems. When
distributing thenew capabilitykey, thenew key-datacorrespondingto thenew key includesthedata
usedto computethenew key andthekey-datafrom theoriginal capabilitykey.

For example,in Figure3.2,if theadministratorwishesto grantBobtheability to readand
write object232 on the storagedevice, the administratorwould generatel � with theREAD and
WRITE attributesin c�uXv+ui� alongwith object232. Bob couldthengrantBrendatheability to read
object232by only including theREAD attribute andobject232 in c�uXv+u � . Brendacouldgenerate
anothercapabilitykey to readobject232,but couldnot generatea capabilitykey to write to object
232,sincetheWRITE attribute is notamongthecapabilitiesof thekey thatBrendapossesses.

26

"bob",�Kbob=�H(READ,123,�Kbob)

Kbob

Bob

Kd

M=Read,123,{{"
bob"},

{R
EAD,123}},�

MACKbob(M
)

ReadReply,�d
ata

Figure3.3: Mixing identityandcapabilitykeys to enableprinteraccessto adataobject.

3.3.2 Generating Identity Keys

Identity keys allow a receiver to checkthe identity of the senderby including an iden-
tification string aspart of the key data. As wasdonewith the capabilitykeys, identity keys are
generatedby hashingtheidentificationstringaspartof thekey dataandthediskkey. Theresulting
identity key, andthecorrespondingkey data,aregivenvia asecurechannelto theclient.

As with capabilitykeys, identitykeyscanbeusedto generateotheridentitykeys. Whena
new identity key is generatedfrom another, theentity in possessionof theoriginal key is vouching
for the identity of theentity for whomthekey is generated.This allows a non-administrative user
to createanew identity key to allow accessto objectstheusercanalreadyaccess.

For example, in Figure 3.2 if the administratorwishesto identify Bob to the storage
device, theadministratorwould includea stringidentifying Bob in c�uXv+u � . Bob couldthencreatea
new key identifying Brendato thedisk by includingastringidentifying Brendain c�uXv+u � . It should
bepointedout that thestoragedevice would only recognizel � asvalid if Bob wereauthorizedto
identify otherusers,or Brendais only accessingobjectsthatBob canaccess.

Whenidentitykeysareused,thestoragedevicemustmaintainadditionalmetadataat the
objectsto be ableto checkthe operationsthat a given identity is allowed to perform. This extra
metadatais not neededwhenusingcapabilitykeys, sincethekey dataspecifiestheoperationsthe
client is allowedto perform.

3.3.3 Combining Keys

Figure3.3 illustratesaninterestinguseof deriving a capabilitykey from anidentity key.
In this example,theuseris in possessionof anidentity key andwould like to print a file. Theuser
cangeneratea capabilitykey, l smDwxm andsendit to the printer. Becauseof the capabilitiesusedto
derive l smDw+m theprintercanonly accesstheobject �zy%{ if Bob hasaccessto thatobject. Therestof
theobjectsto whichBob hasaccessremaininaccessibleto theprinter.

27

Whenthediskreceivesthereadrequest,it will seethat l smDw+m is beingusedandwill receive
thekey datacorrespondingto thatkey. Becausethefirst partof thekey dataconsistsof anidentity, it
will checktheACL of �zy%{ to insurethatBobcanreadtheobject.If hedoeshaveaccess,thedevice
will thencheckthat thecapabilitiespresentin thesecondpartof thekey allow thereadoperation
on �zy%{ .

Mixing capabilityandidentitiesprove to bevery usefulwhenallowing proxy operations
with anotherdevicethatdoesnothaveanidentityassociatedwith it. Otherexamplesarebackupand
archive services,third partydatamining andprocessing,andthird partytransfers.A key enablerof
theseapplicationsis theability for non-administratorsto derive capabilitykeys usingkeys in their
possession.

3.4 Revocation

With all thesekeys beinggenerated,it is importantto beableto disableor revoke a key
if it is compromised.Obviously, the bestway to deal with the problemof key revocationis to
make thekeys secure.Smartcardsandtamperresistantchipsaresomeof thewaysof makingthe
keys “secure”.However, thesmartcardsthemselvescanbelost,whichwouldagainnecessitatethe
revocationof thekeys in thecards.

SCAREDimplementsthreewaysof revoking keys. First, keys have a limited life time.
Second,valid keys arecontrolledat thetarget.Third, all keys canberevokedfor thestoragedevice
by changingthedisk key.

Only accesskey revocationneedsto bedoneat thestoragedevice sinceresponsekeys do
not needto be revoked. Responsekeys areusedby the client to authenticateresponsesfrom the
disk, sotheclient simply stopsusinga key thathasbeenrevoked. Theresponsekey doesnot have
any accessrights associatedwith it, so an attacker would not be ableto gain accessto a storage
device usinga revoked responsekey. No client would recognizeresponsesusingthe revoked key,
soanattackagainstaclient with a revokedkey wouldalsobeuseless.

3.4.1 KeyExpiration

Whenanadministratorgivesakey to aclient, theadministratorcanincludeanexpiration
time in thekey dataof thekey. Giventhata key canonly beusedat onetarget,theexpirationtime
is relative to the timer on that target. By usingrelative time, the needfor synchronizedclocksis
removed.Theexpirationtime will limit thelifetime of thekey.

If anattacker is abletocompromiseakey, thekey wouldonly beusefuluntil theexpiration
time. If theexpirationtime is keptshort,theattacker will only have asmallwindow of opportunity
to exploit thekey. Theability to expireakey is alsousefulwhenusingrevocationlistsbecausethey
keepthelist from growing without bounds.Whenakey is expired,it canberemovedfrom thelist.

3.4.2 Capability KeyRevocation

To aidein capabilitykey revocation,weassociatesaltto acapabilitykey. Saltis anumber,
muchlike a nonce,thatwill never bechangedto a valueit hashadpreviously. It is not considered
secretandit is storedwith every objector meta-dataentry. Whena capabilitykey is generatedfor
anobjector entry, thesaltof theobjector entrymustbeincludedin thekey data.Whenthekey is
used,thesalt in thekey datamustmatchthesalt in theobjector entrybeingoperatedon.

28

Capabilitykeys for anobjector entrycanberevokedby changingthesaltat theobjector
entry. Whenthesalt is changed,all of thekeys that includedthesaltwill be invalidated,sincethe
salt in thekeys will bedifferentfrom thenew salt.

3.4.3 Identity KeyRevocation

Identity key revocationcanactuallybedonein two ways. Thefirst usesrevocationlists
for unexpiredandinvalid identities.Thesecondmethodis asimplerrevocationschemethatrequires
thestoragedevice to know a priori theidentityof clientswith which it will becommunicating.

Whenkey expirationinformationis presentin thekey data,only keys thathaven’t expired
needto berevoked. If it is assumedmostkeys thatarenot expiredarevalid, thenanefficient way
of revoking keys is to give a list of key revocationsto the storagedevice. Basedon the previous
assumption,therevocationlist shouldbeshortsotheidentitiespresentin requeststo thediskcould
becheckedagainstthelist beforeacceptingthemasvalid. Oncea revokedkey is expired,it would
be removed from therevocationlist to keepit from growing without bound. In theory, revocation
lists couldbeusedwith capabilitykeys. However, giventhatthenumberof capabilitykeys will be
on theorderof thenumberof objectson aSCAREDdevice, thelist couldgrow extremelylarge.

Thesecondwayof doingidentitybasedauthenticationis to includeacounterin theiden-
tity key calculation.Thecounteris thenstoredin a tableon thestoragedevice indexedby theclient
id. Whena client makesa request,the device verifiesthat the counterin the tableis lessthanor
equalto thecounterincludedin thekey dataof the request.If thecounterin the tableis lessthan
thecounterin thekey data,thecounterin thetableis setequalto thekey datacounter. To revoke a
key, a new key needsto begeneratedwith a new counter. Whenthenew key is used,thetablewill
beupdatedandtheold keys will becomeinvalid.

3.5 Security Analysis

The previous sectionshave presenteda way of deriving new secretsbasedon an initial
mastersecretsharedby thestoragedevice andtheadministrator. Thenew secretsaresharedby the
storagedevice by exchangingonly public informationaboutthesecretandnot thesecretitself. In
addition,themethodof derivationallows datato beboundto thenew derivedsecret.In thissection
we seekto prove thatonly authorizedpartiescanderive new secretsandthatthedatathatis bound
to thenew secretscannotbechangedin away thatis undetectableby thestoragedevice.

Tobegin ouranalysis,wemustfirstmoreformally definethekeyedone-wayhashfunction
introducedin � 3.2. Thecryptographicconceptsusedin this chapterandthenext aremoreformally
analyzedin [20, 33].

Pseudo-randomfunctions are the basisof our key derivation. Informally, a pseudo-
randomfunction cannotbe distinguishedfrom a randomfunction by a party, the adversary, that
doesnot possessthe secretusedto computethe function. As the secretusedin the function de-
creasesin size,it is morelikely that theadversaryis abledistinguishthe function from a random
function.

To definepseudo-randomfunctionsmoreformally, we musttalk in termsof probabilities
andprobabilisticpolynomial time machines.AppendixB formally definespseudo-randomfunc-
tions. An integral part of the pseudo-randomfunction is the key, which we refer to asthe secret,
thatdeterminestheoutputof apseudo-randomfunctionfor agiveninput. Thesizeof thesecret,the

29

securityparameter, of thefunctiondeterminestheprobabilityof successfullyappearingrandomto
theobserver. Thefollowing factfollows directly from thedefinition.

Fact 1. A pseudo-randomfunction,prf, hasthepropertythat|]}q|�~ 3����0��� | �r3I��� | � Prob� } : �"> � prf � : �]>����I� $ �
where theprobability spaceis over choiceof � andinternal coinflipsof

}
, andwhere

}
is a probabilisticpolynomialtimemachine, and � �S� � � is thesecurityparameter.

Using this fact, we cannow definethe derivation function that we usedto derive new
sharedsecrets.

Definition 1. WedefineEn��: ��> � prf � : ��> where l isasecretand � is publicandprf isapseudo-
randomfunction.A pseudo-randomfunctioncannotbedistinguishedfroma randomfunctionbyan
adversarynot in possessionof l in polynomialtimewith non-negligible probability.

Wedonot restricttheadversary, specifically, theadversarycanseepast �F� p�E � : ��>J� pairs
andmayobtainother �F� p�E � : ��>J� pairsfrom otherclientsor administratorsin possessionof l .

As a preconditionboth the disk administratorandthestoragedevice sharea secretl h .
Thediskadministratormustbeableto generatenew secretsthataresharedonly by theadministrator
and the storagedevice without using a key exchangeprotocol. We will first show that the key
derivationmethodallows theadministratorto createnew secretsfor clientsandbind capabilitiesto
thosesecrets.Thenwewill show thattheclientsthemselvescancreatenew secretswith capabilities
boundto them.Thereis oneclaim which follows directly from thedefinitionof E � : ��> which we
will now state.

Claim 1. ln� �^En��: ����> for agiven ��� cannotbecomputedin polynomialtimewithnon-negligible
probability by an adversary whodoesnot possessl . Further, theadversary wouldnot beableto
distinguishbetweena randomln� and ln� �^En��: ���%> .

Proof: While this claim follows directly from thedefinitionof thepseudo-randomfunc-
tion, it is interestingto notethefollowing contradiction.Let usassumethatgiven � � theadversary
cancomputel � without l with non-negligible probability. And adversarywouldbeableto distin-
guish E from a randomfunctionwith non-negligible probabilityby generatinga l � for a � � and
checkingif E outputsl�� . Since E is pseudo-randomtheadversarycannotgeneratel�� or even
distinguishfrom arandoml � .

It is not enoughthat the adversarycannotgeneratel�� sinceit might be ableto derive
a few bits or a relation on someof the bits. For this reasonwe also neededto claim also that
the adversarycould not even distinguishthe new key from a randomkey. This meansthat even
individual bitsor relationsamoungbits cannotbediscoveredby theadversary.

Therearetwo waysto view therelationshipbetweenl � and � � . First,becauseof theway
ln� is derived, l�� authenticates��� to someonein possessionof l . This is how theconstruction
is usedin MACs. We have chosento view therelationshipas � � describingl � . As will beshown
in thefollowing theorems,if l � is usedasa secretto accessa storagedevice, thederivationof l �
allows theadministratorto describel � using � � . We capturedescribethis relationby sayingthat
� � is associatedwith l � .
Definition 2. We say � � is associatedwith l � if l � cannotbeusedwithout � � and � � describes
thecapabilitiesof l � .

30

Thetechniquesusedin � 3.3dependon � � beingassociatedwith l � . It is becauseof this
associationthatwecanencodeattributesdescribingl � in � � . Thefollowing theoremdescribesthe
association.

Theorem 1. If a client presentsl � ��E ��� : � � > to a SCAREDdevicethat has l h , thedevicewill
beableto reproducel � andverifywith overwhelmingprobability that theadministrator associated
� � with l � .

Proof: BecauseE is a well know function, ��� is public, andthedevice is in possession
of l h , thedevice cancalculatel � by applying E to � � and l h . Claim 1 saysthatonly someone
in possessionof l h couldcomputeln� for ��� . Sinceonly theadministratoranddisk sharel h , l��
musthave beengeneratedby theadministratorusing l h . (Note,we areassumingthatclientsand
administratorsdon’t let their secretsbecompromised.)Theadministratorencodesthecapabilities
of l � in � � . Sinceonly the administratorcould have generatedthe pair �Fl � p � � � , � � must be
associatedwith l � .

This theoremallows the disk administratorto createcapabilitykeys or identity keys by
includingthemin thepublicdata.Otherattributesincludingexpirationtimescanbeincludedin the
public data. Sincethe administratorcreatesthe public data,it canbe usedto convey information
aboutthekey to thedevice.

Using theorem1 we have proven that the disk administratorcanderive keys for clients
andbind capabilitiesto thosekeys. To allow a greaterdegreeof delegationof accesswe needto
prove thatclientscanderive keys for otherclientsusingkeys they possess.

Theorem 2. If a client is in possessionof ln� , which is a secret thatcanbederivedby theSCARED
device, and � � , which is thepublic dataassociatedwith l � , theclient cangenerate a new secret
lnm ��E ��� : ��m�> , where ��m is somepublic data, such that the SCAREDdevice can reproduce lnm
andverify with overwhelmingprobability that ��m and � � are associatedwith l�m .

Proof: Becausethe device canderive l � from � � , the device canapply ��m and l � toE to derive lnm . Justas in theorem1 since E is a pseudo-randomfunction, l�m musthave been
producedusing ��m and l � , thus ��m is associatedwith lnm by aclient in possessionof l � .

Usingthis theoremany client in possessionof a key canderive keys to beusedby other
clients.By bindingnew public datacreatedby thefirst client to thekey, thefirst client canrestrict
whatthesecondclienthasaccessto. Sincethefirst client’s key alsohaspublicdataassociatedwith
it, thedevice canverify that thesecondclient cannotusethekey for somethingthat thefirst client
did not allow. The public dataof the first client’s key is alsoboundto the key generatedfor the
secondclient, so thedevice canverify that thefirst client did not delegatemoreaccessthanit had
to delegate.

UsingTheorem2 wecannow generalizeTheorem1 to applyto derivedkeys.

Theorem 3. If a client presentsl�m ��E � � : ��m�> to a SCAREDdevicethat has l h , thedevicewill
beableto reproducel�m andverify with overwhelmingprobability that ��m wasassociatedwith lnm
by a partywhoseaccessis describedby � � .

Proof: We prove this theoremby inductionon thenumberof derivationsfrom theinitial
key received from theadministrator. Thebasecaseis a key ln� hasbeenderived from l h by the
administrator.

Induction Base: l�� received from administrator.

31

By Theorem2, theSCAREDdevice canreproducel�m andverify that ��m and � � is asso-
ciatedwith lnm . By Claim 1, l�m canonly beproducedby theparty in possessionof l � . Theorem
1 andDefinition 2 saysthat � � describestheaccessof theparty thatpossessesl � . Therefore,��m
wasassociatedwith lnm by apartywhoseaccessis describedby � � .

Induction Step: Assumetrue for derivationsof depth lessthan or equal to �2��� . lnm
hasa depth of � .

Theproof for the inductionstepis thesameasthe inductionbaseexceptthat insteadof
usingTheorem1 we usethe inductionhypothesis.Since l � hasa derivation of depth ����� , the
inductionhypothesisshows that � � is associatedwith l � .

Theorem1 shows thattheadministratorcancreatea secretfor a client that it shareswith
the storagedevice and at the sametime associatedatawith that secretfor usewith the storage
device. With Theorem3 we have generalizedTheorem1 to includekeys derivedby clients.These
two theoremsallow us to encodeaccessinformationabouttheclientsin thekeys they use,so that
thedevicemaygrantaccessbasedonthis information.Wewill usethesetheoremsmorein thenext
chapter.

3.6 Summary

As network storagebecomesmore pervasive the importanceof authenticationwill be-
comeevenmoreevident. Thecurrentpublic key andsymmetrickey methodsof providing authen-
tication informationto network serversrequirestoo muchoverheadandinfrastructurefor usewith
network attachedstorage.Thekey derivationschemepresentedin this chapteroffersa way of pro-
viding strongauthenticationinformationto network attachedstoragewithout a lot of infrastructure
or computationalintensive operations.

TheSCAREDprotocolusesthekey derivation schemeto convey informationaboutthe
clients,aswell asset up sharedsecretsfor useby the SCARED wire protocol. The next chap-
ter presentstheSCAREDwire protocolthatwill build on theconceptsintroducedin this chapter.
Togetherthederivationschemeandthewire protocolwill beusedasthefoundationfor anauthen-
ticatedserverlessdistributedfile system.

32

Chapter 4

An AuthenticatedMessageprotocol for
SCARED

Whenfiles areaccessedby network clients,the requestsmustbeauthenticatedandper-
missionscheckedbeforetheaccessis allowed. Thefile serversgenerallydo this kind of checking.
However, if clientsareallowedto directlyaccessthedisks,thedisksmustalsobeableto verify the
authorityof theclient’s accessto thedata.

Theauthenticationprotocolspresentedin thenext sectionsusetheobjectabstractionand
key derivation schemeof the previous chaptersto implementauthenticationprotocolsthat do not
requireencryptionandsynchronizedclocks,while allowing for delegationof authorityandshared
keys thatarenecessaryfor building aserverlessfile system.

TheSeCureAuthenticationfor RemotelyEncryptedDevices(SCARED)protocolswere
developedat IBM researchfor usein network attachedstorage.Oneof the main designrequire-
mentswas minimizing the managementoverheadof the storagedevices. File servers requirea
substantialinvestmentin managementresources.By pulling the storageout of the servers and
network attachingthem,the numberof managednetwork devicesincreases.If theadministrative
requirementincreasesproportionallyto thenumberof devices,thesystemwould quickly become
unmanageable.Themanagementof network attachedstorageis furthercomplicateddueto thelack
of amanagementconsolewith akeyboardanddisplay. For thesereasonswepushtheadministrative
overheadout to theclients,wheretheadministrationof thestoragedevice canbedonealongwith
thenormalconfigurationof theclient to usethenetwork storage.

Storagedevicesaredeployed in environmentswith a wide varietyof existing authentica-
tion systems,suchasKerberosandpublic key basedsystems,so we did not want to assumetoo
muchabouttheenvironmentin whichthedevicesaredeployed.Theauthenticationoperationsdone
at thestoragedevicearesimple,andallow thedevice to beobliviousto thesecurityenvironmentin
which it exists.Sincekeysusedto interactwith thestoragedevicesaregeneratedandexchangedby
usersandadministratorswithout having to communicatewith the storage,the key exchangescan
take placewithin theexistingsystems.

SCAREDaddressesauthentication.We believe theconfidentialityrequirementsof stor-
agedevicesis bestsolvedby encryptinganddecryptingat theclients.Encryptingdatais expensive
in termsof processingoverheadandintroduceslatency. By doing the encryptionanddecryption
at the client, the datais encryptedover the network andon the storagemediaitself, without any
overheadat theserver. SCAREDdoesnot precludelink level encryption.Section4.4presentshow

33

encryptionkeys canbenegotiatedfor usein link level encryption.
Chapter3 introducedthe threeroles in SCARED:the client, the administrator, andthe

storagedevice. Thestoragedevice sharesa key with theadministrator. Theadministratorusesthis
key to generateotherkeys for useby theclients.Clientsusethederivedkeys to accessthestorage
devices.

An importantfeatureof theSCAREDprotocolis that theadministratordoesnot needto
beonlinewith thediskwhengeneratingsecretsfor theclients.Not only doesthis relaxthenetwork
topologyrequirements,but it alsoallows theadministratorto give new secretsto theclientsusing
off-line methodssuchaselectronicmail.

SCAREDaddressesthreeaspectsof security:identity/capability, integrity, andfreshness.
Whenamessageis received,therecipientneedsto validatewhothemessagewassentby or at least
thatthesenderwasauthorizedto sendthemessage.Next, thereceiverneedsto validatetheintegrity
of themessage,or in otherwords,that themessagewasnot changedin transit. It would seemthat
beingableto validatethesenderwould imply thattherecipientis alsoableto validatethemessage
wasthemessagesentby thatsender, but in practicethis integrity guaranteeis notalwaysavailable.
SCAREDenablesthenetwork storageto validateboth the identity of thesenderandthemessage
thatwassentby thesender. Finally, thereceiver mustbeableto validatethatthemessagewassent
recently(or thatthemessageis fresh),or at leastvalidatethatthemessageis notareplayof anolder
message.

The next sectionwill presentthe methodusedby SCAREDto provide identity andin-
tegrity guarantees.Section4.2shows how freshnessguaranteesaredone.Therequestandresponse
protocolsaredescribedin � 4.3.A securityanalysisof theprotocolis presentedin � 4.5.Thischapter
is summarizedin section4.6.

4.1 Integrity and Identity Guarantees

Sincewe assumeclientsandstoragedevicescommunicateover untrustedchannels,both
partiesmustbeableto verify the identity of theoriginatorof a messageandthat themessagewas
not changedin transit. Both of theserequirementsaresatisfiedby usinga cryptographicconstruct
calleda MessageAuthenticationCode(MAC). Thespecificconstructionwe useis basedon aone-
wayhashandis referredtoasHMAC[30]. [2] cryptographicallyanalyzesthestrengthof theHMAC
construction.

A MAC function takesa string anda secretkey andoutputsa fixed lengthstring. The
MAC hassomecryptographicpropertiesthat allow eitherparty to verify that the messagesender
wasin possessionof aspecifickey andthatthemessagewasnot changedin transit.

A preconditionto usinga MAC is thatbothpartiesarein possessionof thesamekey. If
we assumetwo parties,� and � , wish to exchangea message,� , usinga key, l , a MAC, � can
becomputedby bothpartiesusing � � ���e� � : � > . TheMAC is usedby attachingthecomputed
MAC to themessagebeingsent.For exampleif � sends� to � , � wouldsendthefollowing:

� ¡¢�M£�� p �
Note that l is not sentover thenetwork andtheMAC functionpreservesthesecrecy of l when
usedto calculate� . When � receives � , � canrecompute� sinceit is in possessionof l . If �
equalstherecomputedMAC, �¤�R� � : ��> , � will know that � wassentby someonein possession
of l .

34

Usinga MAC with keys derived accordingto theSCAREDprotocolrequiresthatmore
information is transmittedsincethe storagedevice doesnot directly possessthe key usedby the
client. For example,if aclient, � , is in possessionof akey, ln¥ , andthedataassociatedwith it, ��¥ ,
� couldsendamessageto thestorage,� usingthefollowing protocol:

��¡¦�N£�� p ��¥ p �
Thestoragedevice canderive l ¥ since l ¥ �;EG: � ¥ p l�§P> , where l2§ is thedisk key, sincethe
device is in possessionof l § and ��¥ wassentby the client. Oncethe device hasderived ln¥ ,
� canbe recomputedto checkthe MAC. Because��¥ is boundto ln¥ , the storagedevice knows
informationaboutthe client in possessionof l�¥ asexplainedin chapter3, so the storagedevice
cancheckthecapabilityof theclient to take therequestedaction.

4.2 FreshnessGuarantees

Integrity and identity guaranteesarenot sufficient for an authenticationprotocol,since
oldermessagescanbereplayedwithout detection.Replayedmessageswill have valid MACssince
they weresentby theclient andhave not beenmodified. Freshnessguaranteesallow detectionof
messagereplaysby ensuringthemessageshave beensentin therecentpast,or werein responseto
apendingrequest.

The first phaseof the SCAREDprotocol is to establisha freshnessguarantee.After a
freshnessguaranteehasbeenestablished,theclientsandstorageusethemessageprotocolto send
responsesandreceive replies. Whenpresentingtheprotocols,it is assumedthat theclientsarein
possessionof thekeys neededfor accessingthestorage,andthat thestorageis only in possession
of thediskkey. Theaccesskey usedby theclient is denotedby l � andthekey datacorresponding
to ln� is denotedby ��� . Theresponsekey is denotedby l?¨ andits key data��¨ .

To guaranteethe freshnessof messages,SCARED usestimers, nonces,and counters.
Whenusingtimers,all partiesinvolved in a transactionhave timers that arereasonablysynchro-
nized. Noncesandcountersdo not requireany kind of clocks,only that the nonceandcounters
never take on thesamevalue.Countersarealsorequiredto bemonotonicallyincreasing.

The clientsalwaysusenoncesto checkthe freshnessof a responsesincea nonceis a
freshnessguaranteewith the fewest requirements.When illustrating the protocol exchange,the
client noncewill bedenotedusing ©�� .

Storagedevicesrequireclientsto includea timer or counterin the requestto checkthe
freshnessof therequest.Sincetheclient mustbeableto calculatethefreshnessguaranteethat the
device is using,noncescannotbeused.If thecommunicationwith thedevice is sessionoriented,
thedevice cankey a countersynchronizedwith thedevice basedon thenumberof messagessent.
Otherwise,a timer mustbeused.

The storagecounteror timer will be denotedusing ©�ª . In the following messageex-
changes© }e« `a�\L�`aAav and © }e« `kAJ��¬k��A\` correspondto constantsusedin thecommunicationpro-
tocol to indicatetherequestandresponseof a freshnessguarantee.Beforemakingrequeststo the
storage,theclient mustrequestthestoragecounteror nonceusingthefollowing protocol:

��¡­�N£ � ��® © }e« `z�\L�`kAzv p ©�� p � ¨\¯ p MAC�±° : ��>
��¡­��£�� ��® © }e« `aA��_¬\��A\` p ©�� p ©�ª ¯ p MAC� ° : � >

35

Whenthestoragereceivestherequestin thefirst message,thestorageis ableto generatel ¨ using
� ¨ as shown in � 3.2. If MAC�±° : ��> as calculatedby the storagedevice matchesMAC�±° : � >
includedin therequest,thedevice knows that � wasgeneratedby a client in possessionof l ¨ , so
it will generatearesponseusing l ¨ . ©�� is copiedunchangedby thestoragedeviceinto theresponse.

Whenthe client receivesthe secondmessage,it is ableto checkthe MAC sinceit is in
possessionof l ¨ , andthusknow thatit camefrom thestorage.Thepresenceof ©�� in theresponse
allows the client to know that the messageis in responseto the first message.After the message
exchangetheclient is in possessionof ©±ª , theserver freshnessguarantee,which it usesto establish
thefreshnessof futurecommunicationswith theserver.

4.2.1 Verifying FreshnessusingCounters

If thecommunicationwith thestorageis sessionoriented,countersareconvenientto use
for checkingthe freshnessof requestssincethey do not requireclocks. At the beginning of the
sessiontheclientwill obtain © ª , theinitial sessioncounter. Eachtime theclient transmitsapacket,
it includesthecounterin therequestandincrementsthecounterfor thenext request.

Thedevice is ableto verify the freshnessof the requestby ensuringthat the requestin-
cludesa counterthat is onegreaterthanthepreviousrequestfrom theclient. This impliesthat the
storagedevice mustbeableto maintaina counterfor eachactive session.The initial countersent
to theclientmustbegeneratedin suchaway thatacounterusedin asessionwith thedevice by the
client wasnever usedin a requestby any client of thedevice in othersessions.In our implementa-
tion thecounteris 128-bits,sotheSCAREDdevice generatesa 64-bit nonce,basedon thecurrent
time, for thehigh64-bitsof thecounter, andinitializesthelower 64-bitsto zero.

4.2.2 Verifying FreshnessusingTimers

If thecommunicationwith thestoragedevice is notsessionoriented,timersareusedto al-
low thedevice to checkfreshnesswithouthaving to keepfreshnessinformationaboutall theclients.
To usetimers,all clientsintendingto communicatewith a storagedevice needto synchronizetheir
timerswith the timer of thestoragedevice. This is donein thefirst phaseof communicationwith
thediskby setting©±ª to thecurrentdevice timer.

Theclientsynchronizesits timerwith thestoragedeviceby saving thedifferencebetween
its timer andthe storagedevice’s timer. Sincethe client maintainsa deltabetweenits timer and
the device’s, the storagedevicesneednot, andin mostcaseswill not, have synchronizedtimers.
Theclient includesthedevice’s currenttimer in all requeststo thestoragedevice. This enablesthe
devicesto checkthatthemessageis freshin thesensethatit wassentrecently.

Becauseof network latencies,clockdrift, andthelatency of responsesto requests,check-
ing timestampsalonedoesnotprovideastrictguaranteeof freshness.In particularanattackercould
replaytransactionsin asmalltimewindow. To thwart therecent-pastreplayattack,a list of message
authenticationcodesusedin the recent-pastarekept andchecked with eachmessage.If thecode
existsin thelist, themessageis considereda replay.

Tocompensatefor clockdrift, thestoragedeviceincludesits currenttimerin all responses.
The clientscanthenresynchronizetheir timerseachtime a responseis received from thestorage
device.

36

4.3 The Request/ResponseProtocol

Oncetheclient is in possessionof theserver freshnessguarantee,genericrequestscanbe
madeto the server. This sectionpresentsthe genericrequestandresponseprotocolsusedby the
clientsto communicatewith thenetwork attachedstoragedevices.

4.3.1 The RequestProtocol

Theclient requesthastheform:

�¤¡­�N£6� ��®\² ��` 8 u�v'³'¬k� p c�uXv+u p � � p � ¨ p ©�� p ©�ª ¯ p
MAC����´]�±° : � >

Theoperationrequestedandthedatathatgoeswith theoperationarefollowedby thekey datafor
the accessandresponsekeys that areusedin this communicationwith the network storage.The
device is able to regeneratethe l � and l ¨ using � � and � ¨ , so that it canverify the MAC. ©±ª
is includedto ensurethat themessageis fresh,usingeitherthecounteror timer basedtechniques
explainedin theprevioussection.

If theMAC is valid, thedevice knows thatthemessagearrivedintactandthatit wassent
by aclient in possessionof l � , but it still mustverify thattheclient is ableto requesttheoperation.
The two approachesusedby SCARED to checkaccessare identity basedandcapability based.
In identity basedsystems,the disk needsto be ableto checkaccessbasedon the identity of the
requester. In capabilitybasedsystems,the disk is only interestedin the ability of a requesterto
performa transaction.

Capabilitiesaregrantedby theadministratoror a client in possessionof a capabilityby
generatingan accesskey, ln� , with the capabilitiescontainedin the key data, ��� asexplainedin
� 3.3.1. Therefore,theclient in possessionof l � is alsoin possessionof the capabilitieslisted in
� � . Since l � maybederived from otheraccesskeys, thedisk mustensurethateachtime thekey
is derived from anotherkey, the capabilitiesin thekey dataof thederived key area subsetof the
capabilitiesof theoriginal key. To checkif theclient is ableto carryout the requestedoperation,
thedevice checksthattheoperationrequestedis listedasoneof thecapabilities.

If identitiesareused,� � will containtheidentity of therequester. In orderfor thedisk to
checktheability of a requesterto performanoperation,thediskmustmaintainaccesslistsoneach
object.Whena requestarrives,theidentity in � � is checkedagainsttheaccesslist of therequested
objectto seeif theclient canrequesttheoperation.

4.3.2 ResponseProtocol

Theauthenticationneedsof theclient arequite a bit simplerthantheneedsof thedisk,
sinceit only needsto verify the responsewassentby thedisk in reply to theclient’s request.The
device responsehastheform:

�µ¡­� £X� ��® « `kAJ�_¬\��A\` p c�uXv+u p © � p © ª ¯ p MAC� ° : ��>
l ¨ is usedin theMAC sinceit is thesecretsharedby theclientanddisk. Thecapabilityandidentity
keys may be sharedby differentclients,but the responsekey, l ¨ will only be held by oneof the
clients.After validatingtheMAC, theclientwill know thattheresponsearrivedintactfrom thedisk.

37

Thepresenceof ©�� allows theclient to checkthattheresponseis for therequestthatalsoincluded
©�� . ©�ª is includedto compensatefor clock drifts if timersareusedby thedisk.

The key dataare not included in the responsesincethe requestermust alreadybe in
possessionof l ¨ .

4.3.3 AsynchronousResponses

With oneexception,all messagessentby a SCAREDdevice arein responseto a request
thatoriginatedattheclient. Theexceptionis thecacheupdatecallback.Thisasynchronousmessage
is sentwhenanotherclient hascommittedchangesto anobjectcachedon theclient. Themessage
arrivesin theform of a response,asdescribedabove. Sincethereis no requestthatcorrespondsto
thecallback,we areleft with theproblemof determininga client freshnessguaranteeto put in the
response.

Sincetheguaranteemustbebasedon somethingchosenby theclient, theonly thing we
canuseis a freshnessguaranteeof a previous request.As it turnsout, we cansimply reusethe
freshnessguaranteeof the last responseto theclient. It is easyfor theclient to rememberthe last
guaranteethat it received in a response.To avoid replays,theclient mustkeepa historyof MACs
usedwith the last guarantee.As long as eachMAC is different, the client can be surethat the
asynchronousresponseis nota replay.

4.4 Encryption

A key featureof a securedistributedfile systemis the confidentialityof file data. Cur-
rently, of thecommercialdistributedfile systems,only DFS[15] hastheoptionof encryptingdata
exchangebetweenclient andserver.

A strongerlevel of dataprivacy canbeobtainedif thedatais encryptedby theclient and
sentto the server to be storedin its encryptedform. This kind of client sideencryptionis done
by theCryptographicFile System[6] (CFS),which encryptsdatabeforebeingstoredin a shadow
file systemand decryptsthe dataas it is read. Using CFS with SCARED would keepthe data
confidentialandavoid theperformanceimpactof encryptingat thestoragedevices.

CFShasa key distribution problem,sincetheencryptionkeys mustberememberedand
distributedby users.To overcomethisproblem,weproposestoringtheencryptionkeys in themeta-
dataencryptedwith groupanduserencryptionkeys. Thisallowskeys to beobtainedat themoment
they areneeded.

Oneof theproblemswith storingtheencryptionkeys in themeta-datais that if groupor
userencryptionkeys arechanged,all themetadataneedsto beupdatedby re-encryptingthekeys
usingthenew groupor userkeys.

If thestoragedevicesaretrustedto keepdataconfidential,theproblemswith encryption
key distribution canbe avoidedby encryptinganddecryptingat the storagedevices. To encrypt
thedatabetweentheclientsandstoragedevices,they mustshareanencryptionkey. They already
sharea responsekey, soanencryptionkey canbegeneratedby rehashingthe responsekey with a
publicconstant;but requiringthestoragedeviceto dolink level encryptionincreasestheprocessing
requirementsof thedevice.

Whetheror not thenetwork storageis involvedin ensuringtheconfidentialityof thedata,
theSCAREDprotocolsatisfiestheauthenticationrequirementsof network storage.

38

4.5 Analysis of MessageProtocol

Thepreviousanalysisshows thataderivedkey receivedby aclient is asecretsharedwith
the storagedevice. In addition,the analysisalsoshows that the key dataassociatedwith a key is
boundto thekey in sucha way thatwhena client usesthekey, thedevice canverify theattributes
associatedwith thekey.

In this sectionwe will analyzethetwo messageexchangesusedby SCARED:thefresh-
nessguaranteeexchange,andthegenericmessageexchange.

Therearetwo keys usedin theprotocols:theaccesskey, l � , andtheresponsekey, l ¨ .
Theaccesskey is usedto make requestsandhasaccessrightsof someform boundto it. Theaccess
key maybesharedby otherclientswho maynot necessarilytrusteachother. Theresponsekey is
usedto verify theorigin of a responseandis sharedwith, andreceivedfrom, trustedadministrators
andclients.

To begin our analysiswe must formally defineMACs. In our definition we definethe
propertiesof theMAC functionthatweuse.Otherpropertiesaredefinedin [46].

Definition 3. We define �¤�R� � : �"> as a pseudo-randomfunctionwith the specificproperty that
givena message, � , anadversarywithout l wouldhavea low probabilityof findingin polynomial
timea � such that � � ���e� � : � > . Thispropertyholdsfor an adversary that is ableto seepast
messages,notequalto � , andtheresultingMAC.

To easethewordingof theproofs,we will usethetermcomputationallyfeasibleto refer
to anoperationthatcanbecomputedin polynomialtime andwith morethannegligible probability
of success.We alsousethe phrasewith overwhelmingprobability to refer to a probability over
the choiceof keys usedin the MAC function that is negligibly lessthan1 for every probabilistic
polynomialtimealgorithm.

In the following proofs the adversaryis allowed to watch, modify, and insert into the
messagesbetweenthe client andthe storagedevice. The adversaryis alsoallowed to be another
valid client or storagedevice. It shouldbe notedthat an adversarythat is anotherstoragedevice
would possessanddifferent l h thantarget realstoragedevice. An adversarythat is anotherclient
maypossessa l � thatis sharedby therealclient if it sharesacapabilityor anidentitywith thereal
client (suchasbelongingto thesamegroup),but anadministratorgivesa uniquel ¨ to eachclient,
so theadversaryandtherealclient cannotsharel ¨ . Theadministratoris trustedancannotbean
adversary.

4.5.1 Exchangingthe FreshnessGuarantee

Thefirst exchangebetweenaclientandservermustbearequestfor theserver’s freshness
guarantee,denoted©�ª . The client includesa nonce, ©�� generatedfor the request.The requestis
MACedusingakey, l ¨ , andincludesthepublicdata,� ¨ , associatedwith l ¨ . Theserver responds
with © ª andincludes© � MACedwith l?¨ asfollows:

�¤¡­�N£ � ��® © }e« `z�\L�`kAzv p © � ¯ p ��¨ p MAC� ° : ��> (4.1)

�r¡­� £¶� s ��® © }e« `aA��_¬\��A\` p ©�� p ©�ª ¯ p MAC� ° : � s > (4.2)

Theorem 4. It is notcomputationallyfeasiblefor anadversaryto forgea responsefromthestorage
devicesuch that theclientwill acceptan ©±ª thathasnotbeensentby thestorage device.

39

Proof: Thesameargumentby which we show that l � is a derivedfrom � � in Theorem
1 alsoshows that l ¨ is derived from � ¨ . Becauseresponsekeys arenot sharedamongclients, l ¨
is asharedsecretbetweenthestoragedeviceandtheclient. (Note,theadministratoralsosharesthe
secret,but sheis implicitly trusted.)Sincethe client will checkthat ©�� is in the response,an ad-
versarywouldhave to senda responseof theform � s s ��® © }e« `kAJ�_¬\��A\` p ©�� p © sª ¯ p ���e� � ° : � s·s > ,
where© sª is aguaranteegeneratedby theadversary.

Since© � anoncegeneratedby theclient,thestoragedevicehasnevergeneratedamessage
with aprefix © }e« `kAJ�_¬\��A\` p ©�� andMACedit with l ¨ . So,theadversarywouldhave to beableto
compute���e� �±° : � s·s > whichviolatesthedefinitionof theMAC.

After the © }R« `aA��_¬\��Ak` messageis received, the client andstoragedevice will have a
shared©±ª on which to build our genericmessageprotocol. Up to this point we have not taken
into accountwhetherthe freshnessguaranteeis a timer or counter. This will be consideredwhen
analyzingthegenericmessageprotocolin thenext section.

4.5.2 The GenericMessageProtocol

After theinitial freshnessguaranteeexchange,wecansendthenormalSCAREDrequests
to thestoragedeviceusingthegenericmessageprotocol.Genericmessagerequeststake thefollow-
ing form:

�¤¡­�I£X� ��®\² ��` 8 u�v'³'¬k� p c�uXv+u p ©�� p ©±ª ¯ p � � p � ¨
MAC� � ´]� ° : � >

� � is thepublicdataassociatedwith theaccesskey l � and � ¨ is thepublicdataassociatedwith the
responsekey l ¨ .
Theorem 5. Onreceiptof thegenericrequest,thedevicecanverifywith overwhelmingprobability
that themessage camefroma client in possessionof l � and l ¨ .

Proof: Thedevice canreproducel � and l ¨ from the � � and � ¨ includedin therequest
becauseit is in possessionof l h from which both keys are derived, so it can validatethat the
MAC is correct. l�� and ln¨ aresecretsbecausethey arefrom l h usingapseudo-randomfunction.
Since l � and l ¨ aresecret,it wouldnotbecomputationallyfeasiblefor anadversarythatis not in
possessionof l � and l ¨ to computetheMAC. Therefore,themessagemusthave beensentby a
client in possessionof l � and l ¨ .
Theorem 6. Onreceiptof thegenericrequest,thedevicecanverifywith overwhelmingprobability
that themessage camefroma client whoseaccessis encodedin � � .

Proof: By Theorem5 thedevicecanverify theclientpossessesl � . A client in possession
of l�� hastheaccessencodedin ��� by Theorem1 or Theorem3, dependingonthederivationdepth
of l � .

Of coursethedevicemustalsoprotectagainstreplaysof requests.An adversarycaneasily
replaypastmessageswhichwill have valid MACs.

Theorem 7. With overwhelmingprobabilityanadversarycannotreplaya requestwithoutdetection
by thestorage device.

40

Proof: Eachtime a requestis issuedto a device, the client must include a freshness
guarantee.This freshnessguaranteetakestheform of a counteror a timer. To prove this theorem,
we will examineeachcase.

Case1: Freshnessguaranteeusinga counter.
Device countershave the following properties: they areglobally unique,and they are

incrementedby the client with eachrequest. Globally uniquemeansthat the device will issue
freshnessguaranteesto clientsin sucha way thatno client will ever receive or generatea number
thatanotherclient receivedor generated.In our implementation,theinitial freshnessexchange,©±ª ,
will be initialized to a 128-bit counterwith a 64-bit nonce,basedon the time, asthe high 64-bits
andzeroasthelow 64-bits.

Eachtime thedevice receivesa request,it comparesthecounter, � , with thecounter, � s ,
that it received in thepreviousrequest.If �¹¸� � s H � , it is consideredinvalid. Sinceno previous
messagewill have thevalue � , no previousmessageexiststo bereplayed.

Case2: Freshnessguaranteeusinga timer.
Whenusingatimer, thedeviceinitially givesoutthevalueof its currenttimerto theclient.

The client synchronizesits own timer with thedevice, anduseswhat it believesto be the current
device timerasthefreshnessguaranteein eachrequest.

Becauseof network latency andclock drift, thedevice allows thefreshnessguaranteeto
be within a few secondsof its timer beforeconsideringthe messageinvalid. If the replayoccurs
outsideof this window, the device will detectit whenthe freshnessguaranteeof the messageis
comparedwith the freshnessguaranteeof thedevice. If the replayoccurswithin thewindow, the
device is ableto detectthereplayby maintainingalist of all theMACsusedwithin thewindow.

Whentheclient receivesa response,it mustbeableto verify that the responsewasto a
requestthat it issuedandfrom thedevice to which it wasissued.We will first prove theorigin of
themessageandthenprove that theclient is ableto verify that it camein responseto its request.
Thegeneralform of theresponseis asfollows:

�µ¡­� £X� ��® « `kAJ�_¬\��A\` p c�uXv+u p ©�� p ©±ª ¯ p MAC�±° : ��>
Theorem 8. Whena client receivesa response, it is able to verify with overwhelmingprobability
that theresponsecamefromthedeviceto which it senta request.

Proof: l ¨ is received from theadministratorby theclient over thetrustedchannel.The
device is ableto producel ¨ from � ¨ sinceit possessesl h , but anadversarycannot.

Whenproving Theorem9, it is interestingto notethatit holdseventhoughthenonceneed
notberandom.Sinceanadversarycanpredictthevalueof © � , weneedto useln¨ in therequest,as
well astheresponse.

Theorem 9. Whena client receivesa response, it is able to verify with overwhelmingprobability
that it is in responseto a particular request.

Proof: ©�� is a noncethat is generatedby a client whenit accessesthedisk. This implies
that no two requestsgeneratedby a client will have the same ©�� . Theorem8 allows the client
to verify that the responsecamefrom the storagedevice. An adversarycannotcausethe storage
device to generatea messageMACedwith l ¨ sincethe device will only MAC a responseusing
l?¨ if the requesthada valid triple : ��� p ��¨ p lr> , where l � ln�»ºbl?¨ and � is MACedwith l .
Soby Theorem5, a valid responsecanonly containan ©�� from a previousrequestfrom theclient.

41

By Theorem7, a replayof a previous requestwill bedetectedby thestoragedevice. A replayby
the adversaryof previous responsesfrom the device would have an old ©�� that the client would
reject.

It shouldbenotedthatthereis asecurityholein thecacheupdatecall-back.Althoughwe
candetectreplaysof thecacheupdatecall-back,we cannot detectif anadversaryblocksa cache
updatemessage.Beingableto blockacacheupdatemessageis muchmorepowerful thatbeingable
to replayanupdatemessage.A replayresultsin a degradationof file systemperformancesinceit
will causeunnecessaryreads,but will notcauseinvalid datato beused.Whenanupdateis blocked,
staleandinvalid datawill notbeinvalidatedfrom theclient cache,sotheadversarycouldcausethe
client to useold data. This is an artifact of thecachingprotocol. A strongerconsistency protocol
suchasthatemployedby DFSwouldavoid thisproblem,but would introduceothers,suchasdenial
of servicefrom clientsrefusingto releasecachetokens.

4.6 Summary

In this sectionwe have presenteda protocolto provide integrity, identity, andfreshness
guaranteesto both the client and storagedevice. The protocol will work in both sessionbased
transportsuchasTCPor annonsessionbasedtransportsuchasUDP. Eventhoughwe usetimers
in thenonsessionbasedcase,Wedo not requiregloballysynchronizedclocks.

Becauseof the derivation schemepresentedin theprevious chapter, not only is key ex-
changesbetweenthe storagedevicesavoided,we do not requirethat the administratorbe ableto
communicatewith thestoragedevice. Thisallows greaterfreedomin thenetwork topology.

Becauseof the few requirementswe make of the network, clients,andstoragedevice,
andthe securityguaranteeswe provide, SCAREDmakesa goodfoundationfor a distributedfile
system.In thenext chapterwe introducea file systemthatbuilds on theSCAREDobjectmodelto
managefilesanddirectoriesandthekey derivationandsecurityprotocolto authenticateaccessesto
thestoragedevice. Becauseof theservicesprovidedby SCAREDwe areableto avoid theneedfor
afile server.

42

Chapter 5

Using SCARED in a Distrib uted File
System

UsingSCAREDwith network attachedstorage,we have thebuilding blocksfor aserver-
lessdistributedfile system,calledBrave. Thefile systemis serverlessin thesensethat it doesnot
needa file server to managethemetadata. Instead,the responsibilityfor managingthemetadata
is sharedbetweenthe clientsandthestoragedevices. The integrity of thefile systemitself is the
responsibilityof theclients.

It is useful to contrastBrave with other distributed file systemsand network attached
storage.On oneextremeareNFSandCIFSwhichmanagesthecompletefile systemon oneserver.
On the otherextremeareSAN storagedeviceswhich arebasicallySCSIdevicesconnectedto a
network. A slightly lessextremeexampleof a distributed file systemis AFS. AFS hasvolume
serverswhich managea subtreeof the distributedfile system.On the otherhand,a lessextreme
exampleof network attachedstorageis theNASD projectwhich usesa file server to managemeta
datafor thefile system,andallows thestoragedevicesto storefile datain objectsmanagedby the
devices.

Brave falls exactly betweentheseextremes. Like NASD, Brave storesthe file datain
objectsmanagedby the SCARED storagedevices, but it also storesthe file systemmetadata.
However, it doesnotstoreawholedirectorysubtreelike AFSdoes.TheSCAREDdevicesmanage
thefile systemdataandmetadatain objectsthey manage,but theclientsimplementBrave in their
VFS layerto actuallyassociatetheobjectsstoredon theSCAREDdevicesinto afile system.

In the following section,we will explain the semanticsof the Brave file systemandits
methodof operation.To provide a basisfor theseexplanations,thenext sectionexplainshow the
dataandmetadatais organizedin thefile system.Section5.2will explain thesemanticsof thefile
system,and � 5.3will explain theway thevariousfile systemoperationsarecarriedout in Brave.

5.1 BraveFile SystemLayout

Sincewearebuilding afile systemontopof SCAREDdevices,thereis anaturalmapping
of file systemstructuresto SCARED structures:eachdirectory is storedin a metadataobject
and eachfile is storedin a dataobject. In our initial implementationwe maintain this one-to-
onemapping.In the future,files anddirectoriesmaybestripedacrossdataandmetadataobjects
to improve performanceand scaling. Mirroring may also be usedto improve performanceand

43

Lookup
tag Version

Location
typeFilename

OID

Symlink

Entry
tag

Hostname

Figure5.1: Brave directoryentrylayout.

reliability. Evenwith stripingandmirroring, thebasicconceptspresentedhereremainunchanged.
To introduceBrave,wemustfirst introducethemountpointor rootof thefile system.The

rootof theBravefile systemis adirectory. In Brave thereis notanythingspecialabouttheroot,any
metadataobjectcanbeusedastherootof thefile system.Figure5.1shows thedatastructuresthat
arestoredin theentrydata.In additionto thesestructures,thehashof thefile nameis storedin the
lookuptag.

By storingthehashof thefile namein thelookuptag,theSCAREDdisk is ableto return
the desiredentry on a lookup without sendingall the directoryentriesto the client. This saves
network bandwidth,aswell asoptimizingoneof themostcommondirectoryoperations.Usinga
hashof thefile nameinsteadof thefile nameitself, thestoragedevice is ableto searchon a fixed
sizenumberandpreservesthesecrecy of thefile name,if needed.

Becausethe lookup tag is the hashof the file nameandnot the file nameitself, the file
nameof thedirectoryentryneedsto bestoredin themetadataentry. A SCAREDdevice doesnot
usethefile namesincelookupsaredoneonalookuptag,sothefile nameis storedin theentrydata,
which is storedwithout beinginterpretedby thestoragedevice.

Themainpurposeof a directoryentryis to provide a mappingbetweena nameanda file
or directory. For this reason,a pointerto thelocationof thefile or directoryfollows thefile name.
Thepointercomesin two forms: asymboliclink or anobjectidentifierandhostname(hardlink).

A hardlink is composedof thehostnameof theSCAREDdevice that storestheobject
containingthefile or directoryandtheobjectidentifier(OID) of thatobject.A hardlink preserves
referentialintegrity. Thismeansthatanobjectreferencedby ahardlink will notbedeleteduntil the
link is deleted.

Unlike a hardlink, a symboliclink doesnot retainreferentialintegrity. Instead,thesym-
bolic link is a stringthatis passedbackto theoperatingsystemto beresolved. Thestringneednot
referenceafile thatis partof theBravefile systemor evenafile thatexists.

Referentialintegrity is preserved by usingthe info block that is part of every SCARED
object. Theinfo block is storeduninterpretedby theSCAREDdevice. TheBrave clientsstorethe
entry tag, theOID, andthehostnameof themetadataentry that referencestheobject. Using the
entrydataandtheinfo block,clientshave pointersbetweentheentryandobjectandvice-versa.

Figure5.2 shows an exampleof a directorycontaininga file anddirectory. The file is
storedon the sameSCARED device as the directory, but the directory is storedon a different
device. It is importantto notethat theSCAREDdevice storesthe info block, the entry data,and
thefile data,but doesnotusethecontents.Thefigureshows boththeforwardlinks from theentries
to theobjectsthey reference,andthebackward links from theobjectsto theentriesthat reference
them.

44

Info block

Info block
Entry data
Entry data

Entry data
Entry data

Info block

File data

Figure5.2: An exampledirectorystructurestoredin ametadataobject.

5.2 BraveSemantics

As mentionedin the introduction,Brave extendslocal file systemsemanticsto network
storage.However, whenotherclientsalsohave accessto thenetwork storage,thereareadditional
semanticsthatarise.Network andclient failureconditionsalsoaddsemanticsnot presentin local
file systems.We presentBrave semanticsby first presentingthe file semanticsin � 5.2.1andthen
presentingthedirectorysemanticsin � 5.2.2.

5.2.1 File Semantics

In a local file system,a file is presentedasa logically contiguousstreamof bytes.Files
cangrow andshrink,andbytescanbereadandwritten at randomlocations.Filesmustbeopened
beforethey areaccessedandclosedafteraccessis complete.

To improve write performanceof files, UNIX usesa write back cachefor files. File
changescanbein thecachefor up to oneminutebeforeit is actuallywrittento non-volatile storage.
An applicationcanalsoimmediatelycommitchangesto non-volatile storageusingthesyncsystem
call. Eventhoughchangesmaynot becommittedto non-volatile storage,the local cachemanager
of a local file systemreflectsthechangesto otherapplicationson thelocal machine.

In a distributedfile systemthereis a cachemanagerin eachnetwork client, so any un-
committedchangescanbereflectedlocally at theclient wherethechangeoccurred,but not in the
otherclients. This problemis further complicatedby the fact that we do not requireclientsto be
ableto communicatewith eachother. For thesereasonswe write backchangesto the SCARED
deviceswhenthefile is closed,in additionto thenormalcommitprocessusingtheoneminutetimer
andthesyncsystemcall. This is similar to thecachingpolicy in AFS [24]; however, like JetFile
[21] we only dispatchnotificationsto otherclientswhenwrite backoccursinsteadof waiting for
thenotificationsto be received. Note, it is possibleto usea cachingpolicy that is closerto UNIX

semanticsby usingthecachingpolicy of Sprite[39], but wechoseto implementourcachingpolicy
becauseof its simplicity andrecoverability. This decisionmaybereevaluatedlater.

45

5.2.2 Dir ectory Semantics

Directorieshave morestructurethanfiles. They storea setof entriesindexed by a file
name.Directoryoperationsarealwayswritten throughto non-volatile storage.We maintainthese
semanticsin Brave. Justaswith files,directorycacheupdatesaredispatchedto clientsafterchanges
arecommittedanddo notwait for clientsto acknowledgetheupdates.

UNIX allows multiple hard links to a file. Hard links allow a file to be referencedby
multiple directoryentries.UNIX limits hardlinks to files andonly allows links to files on thesame
file systemasthedirectorycontainingthelink. Brave only allows a singlehardlink to a file. This
simplifiesthefile systemconsistency checks.

To allow links to files on otherfile systemsandto directories,UNIX alsohassymbolic
links. While hard links preserve referentialintegrity, symbolic links may not point to a file or
directorythatactuallyexistsandwill notbeupdatedif theobjectthey pointto is deletedor renamed.
Brave supportssymboliclinks.

5.3 BraveOperations

The SCAREDdeviceshandlethe managementof the storageof the metadataanddata
objects,somostof thefile systemoperationsmapdirectly to SCAREDobjectoperations.However,
to implementall of the semanticsthe client mustmanagethe relationshipbetweenthe directory
entriesandtheobjectsto which they point. Thefile operationscorrespondexactly to theSCARED
dataobjectoperations,sothey will notbereviewedhere.Instead,we will review thestepsrequired
to implementthe directoryoperations.The storagedevices treat metadataanddatadifferently,
which allows theSCAREDdevicesto storethefile systemmetadatawithout actuallymaintaining
it or usingit. Theclientsarein chargeof keepingthemetadataconsistentandupdated.

Brave maintainsconsistency of its directories. Sincethereis no centralfile server and
no inter-disk and inter-client communication,specialtechniquesareusedto maintainreferential
integrity of the metadataacrossstoragedevices. Thesetechniquesarebacklinks, orderedentry
creationanddeletion,andtest-and-setupdates.

Backlinks areusedto checktheconsistency of thefilessystem.In theinfo blockof every
object is the locationandid objectandthe creationtag of the metadatathat refersto the object.
Consistency canbecheckedby insuringthatobjectsreferencedby metadatahavealink backto that
metadata,andmetadataindexedby thebacklink of anobjectactuallycontainsa referenceto that
object.Theformercaseindicatestheentryis invalid andshouldbedeleted,andthelatter indicates
theobjectshouldbedeleted.

5.3.1 Creation

Entry creationis a particularly troublesomeoperationin termsof referentialintegrity,
sincemetadatastoredin the directory entriesmust be sychronizedwith the info blocks of the
objectsto which theentriesrefer. To copewith client anddisk crashesthatmayoccurin theentry
creationprocess,we have a well definedorderof operations.First, the metadatais addedto the
metadataobject.Next, theobjectis createdwith abacklink to themetadata.Finally, themetadata
is updatedwith thelookuptag,thename,andthelocationof thenew object.

If theclientor disk fail afterthefirst step,themetadatawill becleanedupwhentheback
link checkis donesincethemetadatadoesnot referto any object.Failureon thesecondstepwill

46

resultin theobjectbeingcleanedup,sincethemetadatadoesnot referencethenew object.
To avoid having to lock metadataobjectsin orderto updatethe metadata,testandset

updatesareused. If part of the metadatais to be updatedby a client, the old metadatamustbe
read,updated,andrewritten. Sinceanotherclient couldupdatethemetadatain themiddleof the
first client’s update,thefirst client shouldbeableto detectthis condition.This is doneby allowing
aclient to sendaversiontagof theold metadata.If thedisk receivesanupdatefor metadataanda
versiontagthatdoesnot correspondto thecurrentmetadata,theupdatewill berejected.

5.3.2 Deletion

Deletioncouldbeamuchsimpleroperationthancreationwereit notfor directorydeletion
semantics.Normalfile systemsrequirea directoryto beemptybeforeit canbedeleted.Because
of the distributednatureof Brave, we mustsynchronizethe deletionof directoryentrieswith the
object itself to ensurethat a directorythat is emptyat the startof the deletionoperation,remains
emptyfor thedurationof theoperation.We mustalsoensurethataclient failuredoesnot leave the
file systemin aninconsistentstate.

For thesereasons,we usea threephasedelete.Thefirst phasesetsa bit in theentrydata
to indicatethatadeletionoperationis in progressfor thatentry. Thenext phaseactuallydeletesthe
object.Finally, theentryis deleted.

By putting the pendingdeletebit in the entry data,we avoid having to addsemantics
to SCAREDwhile still insuringconsistency in the presenceof client failures. Whenever a client
encountersa directoryentry with a pendingbit set, it knows that it mustcheckthat the object is
presentbeforeusingtheentry. So,if aclientdoingadeletionfailsafterthefirstphaseof thedeletion,
theotherclientswill have to doanextra transactionto checktheexistenceof thereferencedobject,
but thefile systemwill still beconsistent.If theclient fails afterthesecondphase,theotherclients
will detecttheinvalid entrysincetheobjectwill no longerbepresentandwill ignoretheentry.

5.3.3 File SystemChecks

Althoughthefile systemremainsconsistentin thefaceof client failures,performanceis
adverselyaffectedif many invalid or emptyentriesarepresent.For this reasonit is importantto
periodicallyrunfile systemchecks.

Thestoragedevice only storesthefile systemdata. It is oblivious to the relationshipof
theobjectsthatit stores.Sothefile systemchecksmustbedoneaclient. In practiceit will probably
betheadministratorthatchecksanindividual storagedevice,however anyonewith theappropriate
authorizationmaydo thecheck.

A checkis doneby simplysweepingthemetadataobjectsonadiskandcheckingthatits
directoryentriesreferencereferenceexisting objects.A secondsweepof all objectson thedisk is
neededto insurethateachobjecthasa backwardpointerin it’s info block thatpointsto a directory
entry with a forward pointer to the object. Any entriesor objectsthat fail the sweeparesimply
deleted.

Fortunately, no global locks needto be obtainedbeforedoing this kind of check,so the
checkscanbe donewhile the disk is servingdatato other clients. The metadataobject that is
beingfixeddoesnotevenneedto belockedsinceonly emptyor deletedentrieswill beremovedand
thereforenot affect theotherclients. This meansthat thedisksdo not needto be takenoff line or
clientsdeniedaccessto any partof thefile systemwhile thecheckis running.

47

5.4 Conclusion

By building onSCARED,Bravecanbeimplementedcompletelyat theclients,while pro-
viding consistentfile systemsemanticsto theusers.By takingadvantageof theobjectmanagement
facilitiesof SCARED,Brave avoidsrequiringclientsto beableto communicatewith eachother.

Thestructureof thefile systemallows directoriesandfiles to resideon any network disk,
thusenablinga high degreeof scalingbothin termsof storagesize,aswell asnetwork bandwidth.
At thesametime, referentialintegrity of thedirectoriesis preservedusingorderedupdatesandthe
objectsthemselvesassynchronizationpoints.

Becauseof thedistributednatureof Brave, it would beunfortunateif global lockshadto
beobtainedor accessdeniedto specificobjectsin orderto cleanup performancedegradesleft by
failed clients. Becauseof the semanticsof SCARED,no locking at all needsto be donefor file
systemchecks. SinceSCAREDmanagesthe entriesthemselves, a file systemcheckrunning in
thebackgroundcaneasilydeleteemptyentriesandentriespendingdeletion,without affecting the
accessesof otherclients.

Brave illustratesthe power of objectsemanticsat the network storage.Not only do we
gain thescalabilitybenefitsof a serverlessfile system,but we alsohave thestrongaccesscontrol
andauthenticationprovidedby SCARED.

48

Chapter 6

Implementing SCARED and Brave

To validateour file systemdesignandnetwork attachedstoragemodelwe implemented
SCAREDandBrave in bothJavaandC.TheC versionof theclientwasdonein theform of aLinux
Virtual File System(VFS). In thecourseof our implementation,we not only validatedour model,
but alsowereableto getanideaasto thecomplexity introducedinto theclientsandstoragedevices.

Brave usesTCP [45] becauseof its goodperformancein a variety of environments. It
allowsusto operatewell in LAN environments,aswell asWAN environments,suchastheInternet.
EventhoughTCPis a statefulprotocol,we cangracefullyrecover from TCPdisconnectsby trans-
parentlyreinitiatingthesessionswhenneeded.Thisallows usto avoid theoverheadof maintaining
sessionsthatarenot in use,andto recover from network storagereboots.

Although the necessaryconceptsto implementSCAREDandBrave have alreadybeen
introduced,it is necessaryto review someof themin termsof currentUNIX file systemsto fully
understandthe complexities introducedby SCAREDandBrave, andhow they integratewith the
VFS.

6.1 UNI X file systems

The Berkeley FastFile system(FFS) is the quintessentialUNIX file system[34] which
improved uponthe original UNIX file system[48]. Most local file systemsresembleit, andeven
thosethatdiffer greatlyin their design,endup adaptingto its structure.This adaptionis mandated
by theVFS interfacein UNIX.

Thetwo basicconceptsthatFFSis built on arei-nodesanddirectories.Thei-nodeman-
agesthestorageallocationandthedirectoriesmanagethenamespace.

6.1.1 I-nodes

Thebasicstoragemanagementunit in FFSis thei-node.Thei-nodecontainsownership
andaccessinformation, in addition to the locationsof the disk blocksthat storethe i-nodedata.
Becausethei-nodeis storedonasinglediskblock, thereis a limit to thenumberof datablocksthat
canbereferencedin thei-nodeitself. FFSmakesuseof indirectblocksto allow files largerthanthe
numberof blocksthancanbereferencedby thei-nodeitself.

An indirectblock storesa list of thelocationsof datablocksmakingup a file. They can
alsopoint to otherindirectblocksfor even larger files. Oneof the improvementsof FFSover the

49

traditionalUNIX file systemwasto increasethesizeof thedisk blocks,which reducedthenumber
of indirectblocksneededwhile improving disk I/O by actingon largerchunksof storage.They also
madeaneffort to allocateblocksin thesamefile closetogether.

6.1.2 Dir ectories

Directoriesarestoredin i-nodeandplay a specialrole in thefile system.Files arealso
storedin i-nodes,however, thedatacontainedin thefile datablocksarereadandwritten usingthe
file system,but thedataitself is notactuallyusedby thefile system.

Thedatablocksfor directoriesareusedby thefile system.As mentionedearlier, directo-
riesmanagethenamespaceof thefile system.In FFS,thedirectoriesstorethenamesof thefiles
andsubdirectoriesof theirchildrenalongwith ani-nodenumberin thedatablocks.Whena lookup
on a nameis done,thedirectorymapsthenameto ani-nodenumber. Thefile systemkeepsi-node
tablesto mapi-nodenumbersto theappropriatedisk blocksthatstorethei-node.

Applicationscannotreadandwrite the raw datablocks of a directory i-node. Instead
directorieshave operationsto add,change,remove, lookup, and readdirectoryentries. The file
systemtranslatesthedirectoryoperationsinto operationson thedatablocks.

6.1.3 Virtual File Systems

WhenNFSwasimplementedon UNIX, it becameapparentthat therewasa needfor an
interfacethatwould allow file systemswriters to exposetheir file systemto thekernel. To define
the interface,it wasnecessaryto chooseanabstractfile systemmodelthat thefile systemswould
implement.

The interfaceis calledtheVFS [28] andtheabstractmodelis patternedafterFFSusing
i-nodesanddirectories.Specifically, eachfile or directoryis representedby an i-node. The types
of operationson thei-nodedependon whethera file or directoryis represented.For files, thebasic
operationsareread,write, andtrunc.Thebasicoperationsfor directoriesarelookup,create,delete,
rename,andreaddirectory.

6.2 Integrating Braveand SCARED into the VFS

Having introducedtheVFS, it is usefulto revisit briefly thenew objectparadigmintro-
ducedby SCARED.Normally, adiskexposesablock interface,sothefile systemmustmanagethe
mappingof blocksto i-nodes.This meansthat thefile systemmustkeeptrackof freelists,aswell
asmaintaintheblock locationsin thei-nodesandindirectblocks.

By usingobjectbasednetwork storage,we move themanagementof thedisk blocksand
i-nodesto thestoragedevice. Brave mapstheVFS i-nodeoperationsdirectly to operationson the
SCAREDobjects.This offloadstheblock allocationandmanagementtasksfrom theclient to the
network storage.

As mentionedin thepreviouschapter, someof themetadataoperationsrequireadditional
work by theclient file systemto preserve theintegrity of Brave. In our implementationthis turned
out to besurprisinglyeasy. Thebiggestcomplicationwascreatingani-nodefrom directoryentries.

In FFSa directoryentrysimply mappeda nameto ani-nodenumber. A SCAREDdirec-
tory entrymapsa nameto a location.Thereis no conceptof ani-nodenumberin eitherSCARED
or Brave. Whena lookup is doneandan i-nodemustbe created,Brave extractsthe information

50

Brave

Page CacheVFS

Braved

Networking

Shared C Library

Dynamic
binding

Kernel
Pipe

Callback Callback

Kernel networking routines

Figure6.1: Brave integrationinto theLinux VFS.

on thelocationof theobjectfrom thedirectoryentryandinstantiatesani-nodeplacingthelocation
informationin a privatefile systemspecificmemberof the i-nodestructure.Thei-nodenumberis
ignoredby Brave.

Whenthei-nodeis used,Bravewill needto establishaconnectionto thenetwork storage.
Sincethehostnameof thenetwork storageis storedin thedirectoryentry, Bravewill needto resolve
the hostnameto an IP addressin orderto make the network connection.Brave usesa userlevel
daemon,braved, to resolve thenamesandcreatetheconnection.This is becauserulesandfunctions
to do hostnameresolutionarein thesharedC library, which is not loadedby thekernel.

Figure6.1shows links betweenBrave,theotherpartsof thekernel,andbraved. Whenthe
Brave moduleis insertedinto thekernel,it createsanew processandexecutesthebravedprogram.
Beforestartingexecutionit makes the standardinput andoutputstreamsof the new processend
pointsof pipes.TheBrave kernelmoduleandbravedthencommunicateover thesepipe.

Whenaconnectionneedsto beestablished,theBravekernelmodulewill sendamessage
throughthepipeto bravedcontainingthehostnameof thedevice to which theconnectionis to be
made.ThebravedprogramusesthePosixgethostbynameroutineto resolve theIP addressandthen
opena TCPconnectionto thathost. Either theopensocket numberor a ¼f½ , if unsuccessful,will
be returnedto the kernel throughthe pipe. If the connectionsucceeds,the Brave kernelmodules
will find thesocket indexedby thesocket descriptorin thefile descriptortablefor bravedanduse
that socket to communicatewith thenetwork storage.A similar processis usedto closetheTCP
connection,aswell as,obtainthekeys to makeSCAREDrequests.

The final piecethat links Brave into the Linux kernel is the pagecache. Brave takes
advantageof theLinux pagecachesothatit only needsto handlereadsof pagesthatarenotalready
in thecacheandwrites. Whenever oneof theseconditionsoccur, a callbackis issuedby thepage

51

cacheon the Brave i-node. The readandwrite functionsare thendirectly mappedto SCARED
requeststo fulfill therequest.

6.2.1 Allocation Management

Braveallowsfilesanddirectoriesto resideondifferentSCAREDdevicesthantheirparent
directories.Sowhenanew file or directoryis created,theVFSneedsto decidewhichdevice to use.
If thesamedevice is alwaysused,theperformanceof Brave will be thatof a singledevice. Other
considerationsalsoneedto be taken into account,suchaswherethenew file or directoryis to be
used,network locality of accesses,thefreecapacityof availabledevices,theestimatedloadthatthe
new file or directorywill generate,andthecurrentloadof availabledevices.

We choseto usea simpleallocationpolicy thatwould allow behavior thatcouldbewell
understoodby usersof Brave andallow thevariablesmentionedabove to betaken into account.It
shouldbe notedthat many of the above variablesarereally only known by the userat allocation
time.

Our allocationpolicy is very simple,unlessindicatedotherwiseby the user, a new file
or directory is createdon the samedevice asits parent. A usermay indicatethat the new object
shouldbecreatedon a differentdevice usinga specialsyntax.Whenthenew file namecontainsa
substringof theform “@ ¾ host¿ ”, theVFS allocatesthenew objecton thedevice thatcorresponds
to thegivenhostname.Thespecialsubstringis removedbeforeit is insertedinto thedirectory. For
examplethefile “foo@ ¾ host.domain¿ ” will becreatedasa file with thename“foo” on thedevice
thatcorrespondsto “host.domain”.

6.3 Implementing SCARED

The SCAREDobjectmodelwasdesignedto be assimpleaspossible,so we weresur-
prisedat thecomplexity of implementingtheSCAREDserver. SCAREDdoesnotneedto maintain
a file systemhierarchyor worry aboutreferentialintegrity, so it is simplerthana normallocal file
system.However, it mustmaintaintheinformationthat is normallycontainedin an i-nodeaswell
asthelist of freeblockson thedisk. Thus,theobjectbaseddisk is significantlymorecomplex than
adisk thatsimply needsto mapblock requeststo sectionsof adisk.

Our implementationof theSCAREDdevice bearsstrongresemblanceto FFS.An object
identity is mappedto a disk block that containsthe info block andACL for theobject,aswell as
pointersto thedatablocksor indirectblocksif needed.Thedevice mustalsomaintaina list of free
blocksjust like FFS.To provide fastrecovery from power failuresandreboots,we journalthemeta
datarequest.

Eventhoughthecodeis not muchsimplerthana local file system,SCAREDdoeshave
a shortercodepathwhendoing lookupsof objects.This is becausetheobjectidentifier is usedto
directly index thedisk block thatcontainstheobject’s datablock locations.This allows usto skip
the directorysearchingand the iterative lookupsthat areneededin the local file system. (These
lookupstake placein Brave at theclient.)

It shouldbenotedthatwe couldhave adopteda muchsimplerimplementationsimilar to
theBullet file system,thatwould have resultedin muchsmallercode;but would have left uswith
a defragmentationproblemaswell as requirementthat the clientsbe ableto cacheentirefiles at
locally. Fortunately, the objectabstractionallows for changingthe implementationof thestorage
managementandallocation.

52

6.4 Summary

In summary, wewereableto doaproofof conceptof BraveandSCAREDby implement-
ing a Brave file systemat the client anda SCAREDserver in both Java andC. The semanticsof
SCAREDmappedwell into theoperationsthatBrave require.

WhenimplementingtheLinux VFS, theonly difficulty wastheresolutionof hostnames
by the kernel. The useof host namesinsteadof IP addressesallows a level of indirection that
easesthe movementof network storageto different subnets.Becausenameresolutionis highly
configurable,we useauserspacedaemonto do theresolutionsusingtheC sharedlibrary.

TheC implementationof SCAREDillustratedthecomplexity thatis introducedby mov-
ing from a block interfaceto anobjectmodel. Eventhoughwe have adopteda very simpleobject
model,we have to do thesamemanagementof freespaceandstoragemanagementthata local file
systemmustdo. Theflat namespaceandobjectidentifiersdoesreducetheamountof codein the
implementationandthecodepathat runtimewhendoingmetadataoperationssuchaslookups.

53

Chapter 7

Conclusions

As clientsbecomesmoreconnected,it becomesimperative to have a scalableandsecure
methodof accessingnetwork attachedstorage.Wehave reviewedthecurrentmethodsof providing
distributedfile servicesandthecommonwaysof securingthem. We have identifiedtheproblems
with thesecurrentmethodsandproposedwaysto overcometheir deficiencies.

7.1 Contrib utions

By building upontheSCAREDobjectmodelandtheSCAREDauthenticationprotocol,
we have beenableto implementan authenticatedserverlessfile system,Brave. BecauseBrave is
implementedat the client anddoesnot requirea centralfile server, we remove the limitations to
scalabilitythatfile serversbring.

7.1.1 Comparison to RelatedWork

The mostpopulardistributedfile systems,NFS andCIFS, suffer from security, aswell
asscalability, problems.Both systemsareinappropriatefor usageon untrustednetworks because
of thesimplicity of compromisingtheir securitysystemsandbothrequirethefile systemto reside
entirelyon asingleserver.

ClusteringandNASD aretwo waysof increasingthescalabilityof thesingleserver. A
clusterthathasaclusterfile system,suchastheserverlessfile system,canexportanNFSfile system
from eachnodeof thecluster;whichallowstheclusterto handlemany moreclientsandexportmore
storagethanasingleserver, but it is still limited by thesizeof thecluster.

In similar ways,NASD allows theserver to grow by offloadingthefile dataserver func-
tion to thestoragedevices. It hasbettersecuritypropertiesthatallow confidentialityandintegrity
guaranteesbetweenclientsandstoragedevices,but it still relieson thefile server to serve themeta
dataandgeneratecapabilitykeys, which limits the scalabilityof the file system. NASD alsore-
quiresmodificationof theclientssothattheclientsareableto directfile datarequeststo thestorage
devicesinsteadof theserver. NASD doesnotuseidentity keys which increasesthenumberof keys
managedat theclient andobtainedfrom thefile server. Otheradvantagesof SCAREDover NASD
aresharedaccesskeys andmoreefficient freshnessguaranteeswhenusingsessionbasedprotocols.

In many ways, the Brave file systemis closestto AFS. It hasthe unified namespace
of AFS which allows it to scaleby distributing the file systemover multiple servers. Brave has

54

threemain advantagesover AFS. First, SCAREDdevicesdo not mandatea specificsecurityin-
frastructure,insteadthey canbeincorporatedinto theexistingsecurityinfrastructure.Second,AFS
managesfile systemtreesin termsof volumes.Eachvolumeserver maintainsthefile systemhier-
archyfor thatvolume. In effect, AFS transparentlymountsthesefile systemsto achieve a unified
namespace.SCAREDmanagesonly individual files anddirectories.This meansthatSCARED’s
allocationis muchfiner grainedthanAFS. It alsoallows files to be stripedacrossmultiple disks,
somethingthat cannotbedonewith AFS. Finally, theclientsmanagewhereobjectsareallocated.
Normally, AFS requiresan administratorto managea volumegroup,but Brave allows clients to
put files anddirectorieson any storagedevice they choose.This not only givestheclientsgreater
freedom,but alsoeliminatesamanagementtaskfor administrators.

7.1.2 Specificadvantagesof SCARED and Brave

Brave andSCAREDhave their own uniqueadvantages.Brave offersscalabilityin terms
of theamountof storage,aswell asthenumberof clients.Brave’sstrongauthenticationis theresult
of thestrongauthenticationof SCARED.Theobjectmodelusedby SCAREDis powerful enough
to eliminatetheneedfor a file server andstill provide authenticatedaccessto storage.Finally, the
SCAREDprotocolallows for simplified key managementwhile makingfew requirementson the
network topology.

The client directedallocationprovides two kinds of scalability. First, as the needfor
storageincreases,new SCAREDdevicescanbeaddedto thenetwork. Theadditionof thedevice is
independentof any centralauthority, sotheaggregationof storagecangrow withoutbound.Second,
theallocationdecisionsaremadeat the client. This meansscalingis not limited by management
overhead.Eachclient managesits own storage,soasthenumberof clientsandstoragegrows, so
doesthefile system.

BraveandSCAREDalsooffer strongauthenticationguarantees,allowing usto havemore
securitythanany of theavailablefile systems.Theability to controlaccessto thedisk is dependent
upontheSCAREDobjectmodel.Themodelgivesacontrolpoint for doingaccesscontrol.Without
anobjectmodel,accessis doneonablockbasis.Usually, asin thecaseof FibreChannel,thediskis
alsodividedinto partitions.Without theobjectmodel,accesscontrolcanonly beconvenientlydone
on a disk or partitionbasis.Theonly otherpoint of accesscontrol is thedisk block. Unfortunately,
thedisk blocksaresmallenoughthat to do accesscontrolon individual blockswould requirea lot
of work to convey to thediskwhichgroupof blocksaclient is allowedto access.

With theobjectmodel,thedisk blocksaregroupedinto objectswhich serve asan ideal
point of accesscontrol. We areableto attachaccesscontrol lists to theobjectsto allow easierkey
managementat boththeclientsandstoragedevices.

The ability to provide the correctgranularityof accesscontrol is reasonenoughto use
the SCAREDobjectmodel,but thereareeven moreadvantagesin termsof objectallocationand
management.By allowing thedisk to managetheallocationof disk blocks,many of thesynchro-
nizationissuesassociatedwith managingallocationscanbe“centrally” atthediskitself. In addition,
thedisk canalsobeusedasa synchronizationpoint for metadataoperations,suchasfile creation
anddeletion.

Along with theobjectmodel,wehavepresentedandanalyzedamethodof off-line shared
key derivation and an authenticatednetwork protocol. The key derivation avoids the computa-
tion overheadof public key operationsandthe infrastructurerequirementsof othersymmetrickey
authenticationmethods.Theauthenticationprotocolprovidesidentity, integrity, andfreshnessguar-

55

antees,without requiringtheuseof heavy cryptographicoperationsor encryption.
We have validatedboth SCARED and Brave by implementinga SCARED server and

Brave client in theform of a Linux VFS.Theimplementationvalidatedthesimplicity of theBrave
client whenusedwith SCARED.It also illustratedthe increasedcomplexity of a storagedevice,
whenit needsto do morethanjustdirectmappingof requeststo diskblocks.

In conclusion,SCAREDis a flexible objectmodelandsecurityprotocolwhich canbe
usedin a varietyof environments.Whenusedwith Brave, thecombinationresultsin a file system
that works well in both a LAN andWAN environment,makingit perfectfor useon the Internet
becauseof its scalingandsecurityproperties.Thesmall footprint of Brave allows it to beusedin a
smalldevice,aswell asa largeserver.

7.2 Futur e Work

The purposeof the currentwork wasto establisha basisfor building a distributed file
systembasedon authenticatednetwork attachedstorage.The currentdesignis robust enoughto
allow for additionalsemanticsto be addedto theSCAREDmodelandnew schemesfor mapping
file systemfiles anddirectoriesonto the SCAREDdevices. Specificallysemanticsmay be added
to enabledifferent forms of caching. Locking is alsomissingfrom Brave andmay be supported
by extendingSCARED.Allocation and load balancingcould aid in the performancescalingof
Brave. Stripingandmirror couldimprove theperformanceof largefilesandprovideredundancy for
performanceandreliability reasons.

7.2.1 Caching

Wehaveasimplenotionof cachecoherency thatallowsustohaveacachingmodelsimilar
to AFS without a lot of overheadat thestoragedevice. In our currentimplementationof theBrave
client, we do only in-memorycaches.Dependingon thenetwork bandwidthandlatency between
theclient andstoragedevice it maybemoreefficient to have a largeon-diskcacheat theclient,as
is usedwith AFS.

It is alsopossibleto simplify thestoragedeviceby usinga timebasedcachingpolicy like
NFS.Thiswouldeliminatetheneedto trackobjectstheclientsareinterestedin, aswell astheneed
to sendcachecall backs. On the otherextreme,a morestrict cachecoherency protocol, like the
oneusedin DFS,canbeused.This would requiremorestateat thestoragedevice,aswell asmore
communicationsbetweentheclientsandstoragedevice.

Becauseof thedistributednatureof Brave, we believe thebestpolicy would beto allow
clientsandstoragedevicesto negotiatethecachingpolicy onaperdevice,or evenperobject,basis.
Thiswouldallow for awidevarietyof clientsandstoragedevices.

7.2.2 Locking

Wehave not addressedlocking. Distributedfile systemsvary on their supportof locking.
NFShasa locking protocolthat is usedwith thefile sharingprotocol.CIFShasstrict locking built
into it. AFSdoesnot supportfile locking.

It is our belief that locking is bestdoneoutsidethe file system. However, locking se-
manticscanbeaddedto objectsor to directoryentries.Sincefiles maybestripedacrossmultiple

56

objects,doing the locking on the directoryentry would allow for centralizedmanagementof the
locksfor thesetof objectsthatconstitutethefile or directory.

Anotherapproachto locking would be to simply usea separatelocking service. Infor-
mationon which serviceto usecouldbeencodedinto thedirectoryentry. While this would allow
locking to bedonewithout having to addsemanticsto SCARED,work would needto be doneto
insurethat the authorizationsfor the locking serviceandSCAREDobjectsthat correspondto the
locksaresynchronized.

7.2.3 Striping and Mirr oring

Ourcurrentimplementationof Bravehasaone-to-onemappingbetweenafile or directory
andaSCAREDobject.Greaterperformancecanbeobtainedby stripingfilesanddirectoriesacross
SCAREDobjects.Replicatingfiles anddirectoriesover multiple objectsallows client accesseven
in thepresenceof network anddevice failures.Replicationalsoincreasesthenumberof clientsthat
areableto accessagivenfile or directory.

Theformatof thedirectoryentrydataallows for the locationof a file or subdirectoryto
bein a varietyof formats.Currently, theonly typesof locationsaresymboliclinks andpointersto
singleobject.Morecomplicatedlocations,suchasa list of objectsthefile or directoryis replicated
across,or a list of objectsanda stridesizefor striping, canbe storedin the entry datato allow a
varietyof stripingandmirroringschemes.

Thedifficulty managinga file or directorythat is storedon multiple objectsis thecoor-
dinationof the updates.Whenonly oneobject is involved, the device managingthe objectalso
servesasa point of synchronization.Whenmorethanoneobjectis involved,we no longerhave a
synchronizationpoint.

If lockingsemanticswereavailableto theBrave clients,they wouldbeableto coordinate
updatesto the objects;althoughrecovery from client failureswould still needto be addressed.It
wouldbenicerto beableto providetheability to dothenecessarycoordinationwithout full locking
semantics.

7.2.4 Allocation and Load Balancing

Currently, weallow theuserscompletecontroloverwherenew objectsareallocatedwhen
a file or directoryis created.This typeof allocationis usefulbecausea usermayhave a betteridea
of how, where,andwhenafile will beusedthanafile server couldpossiblyhave. As filesareused,
a file server, if therewereone,would beableto detectaccesspatternsandhot spots,move files to
localizeclient access,andspreadhot spotsacrossdevices.

Theproblemwith this kind of load balancingandallocationmanagementis the lack of
a centralserver. Potentially, a device could gatherlocal information on object accessesand an
allocationmanagercouldgatheraccessstatisticsto make moreglobalallocationdecisions.

57

Appendix A

KeyData Encoding

SCAREDkey datais madeupof asetof attributesthatcorrespondto akey. Eachattribute
is encodedby a byte representingtheattribute type,a byte representingthe lengthof theattribute
data,followedby theattributedata.Usingthisencodingatmost254attributedtypescanbeencoded
sincethetypeszeroand255arereserved.Also, theattributedatacanbeatmost255bytesin length.

Thedatathatcorrespondsto a SCAREDkey is madeup of a setof attributesthatcorre-
spondto akey appendedto theattributesof thekeys from which it wasderived.Sincethekeys can
bederivedfrom a numberof otherkeys, theattributesof theparentkeys needto bedelimited.We
delimit eachsetusingtheoctet0xff. Thus,key datawill becomposedof setsof attributesdelimited
by theoctet0xff, wherethefirst setof attributesaretheattributesassociatedwith thefirst key from
whichall of thesubsequentkeys arederived.

TableA liststhedefinedattributetypes.Theseattributesfall into threecategories:identity,
capability, and informational. The attributesin eachof thesecategorieswill be describedin the
following sections.SectionA.4 describesthealgorithmfor evaluatingtheattributesto checkaccess.

A.1 Identity Attrib ute

Theidentity attributeconveys theidentity of thepossessorof thekey. This identity could
take the form of a 16-bit UID or GID, or a variablelengthstring,or any othersequenceof bytes
identifying a client. In our current implementationwe have chosento have the user identifiers
restrictedto 128-bitnumbers.This allows for globally uniqueidentifiersto begeneratedandused.
Thuseachidentityattributewill have 16bytesof attributedataassociatedwith it.

While it is conceivablethata key couldhave only oneidentity associatedwith it, in our

octet type
0x01 client id
0x02 objectid
0x03 permission
0xfd expiration
0xfe salt

TableA.1: SCAREDattributetypesfor key data.

58

Permission Mask
read 0x0001
write 0x0002
delete 0x0004
admin 0x0008

TableA.2: Permissionmasksfor thepermissioncapabilityattribute.

applicationswe associatemultiple identitieswith a key. A userwill generallyhave her 128-bit
identity in thekey data,aswell asthe128-bitgroupids of thegroupsto which shebelongs.Each
identity will beaseparatedattribute in thekey data.

Whenevaluatingthekey, theidentitiesin anattributesetwill betreatedasa union. This
meansthataddingan identity to anattributesetwill broadentheaccessa key has.Whenderiving
a key thatcontainsanidentity attribute,thederivedkey will only have a subsetof theaccessof the
parentkey. This meansthata key, À�Á that is derived from a key, À with the identity attributesforÂ

, Ã , and Ä , andhastheidentity attributesfor Ã and Å in thekey datafor À�Á , will only identify
thepossessorof À Á asB. EventhoughD is in thekey datafor À Á , it is ignoredsinceit is not in the
key datafor À .

A.2 Capability Attrib utes

Theoctets0x02and0x03arecapabilityattributes.They describewhatthekey cando as
opposedto whopossessesthekey. Theoctet0x02is theobjectcapabilityandrestrictsthecapability
to aspecificobject,andtheoctet0x03is thepermissioncapabilityanddescribesthepermissionsof
thecapability.

The objectcapabilitybinds the capability to a specificobject. It is always16 bytesin
lengthandtheattributedatawill containtheOID of theobject.If therearemultipleobjectsattributes
in anattributeset,thecapabilitywill applyto bothobjects.As with identityattributes,aderivedkey
mayincludeobjectcapabilitiesto furtherrestricttheobjectsto which a capabilityapplies,but they
cannotincreasethenumberof objectsto whichacapabilityapplies.

By itself, the objectcapabilityattribute doesnot carry any permissions,so unlessit is
derived from a key with permissionattributesor an identity attribute, the key would not be able
to do anything. A permissioncapability attribute gives permissionto the holder of a key. The
permissionattribute is usually16-bitsin size.It is abit mask,whoseinterpretationis givenin table
A.2. Only thefirst setof attributescanadda permissionto a key. Permissioncapabilitiesin any of
theotherattributesetswill only furtherrestrictthepermissionsof a key. If thepermissionattribute
is notaccompaniedby anidentityor objectcapabilityattributeandis notderivedfrom akey with an
identity or objectcapabilityattribute, thepermissionappliesto all theobjectson a storagedevice.
Soa key with just thereadpermissioncapabilityattribute would beableto readall objectson the
storagedevice.

It shouldbe notedthat capability attributesand identity attributescan be mixed. For
example,if the readcapabilityattribute occurswith the identity attribute for Ã , thekey is ableto
readall objectsthat Ã canread.Anotherexamplewouldbeanobjectcapabilityattributefor objectÆ

andtheidentity attribute for Ã . This key would beableto read
Æ

if Ã couldread
Æ
, but it would

notbeableto read Ç evenif Ã couldread Ç .

59

A.3 Key Inf ormation Attrib utes

Therearetwo attributesthathave informationaboutthekey itself andareorthogonalto
thecapabilityandidentity aspectsof thekey. Theoctet0xfd hasexpiration informationaboutthe
key, andoctet0xfe describesthe salt usedto derive thekey. Both of theseattributesenhancethe
securityaspectsof thekey by providing a way to limit thelifetime of thekey andto randomizethe
generationof thekey.

Limiting thelifetime of thekey limits thewindow of opportunityfor anattacker to usea
compromisedkey. Theexpirationtime is relative to the local timer on thestoragesincewe do not
requireaglobalclock. Thetimer is a64-bit big-endiannumberandtheunitsareseconds.

A salt is anumberthatis addedto thederivationof thekey to introducerandomness.The
salt itself neednot berandom.Saltsareusually128-bitnumbers.Thestoragedevice doesnot use
thesaltfor anything.

Sinceresponsekeys mustbeuniquebut do not carryany accessrights, their key datais
only madeup of salt. For example,a responsekey will usually take the form of the octet0xfe
followedby thelengthof thesalt,usually16, then16 arbitrarybytes.Thesaltdoesnot have to be
randombut mustbeuniquein relationto anetwork storagedevice.

A.4 KeyData Evaluation

To determinetherightsandvalidity of a key, thestoragedevice mustevaluatethesetsof
attributesin thekey datastartingwith thefirst setof attributes.Thefirst stepin attributeevaluation
is to checkfor an expiration attribute. If one is presentandexpired, the key will be rejectedas
expired.

Thenext stepis to checkfor an identity attribute. If oneis presenttheaccesslist for the
targetof therequestis checkedto insurethattheoperationis permitted.

Assumingthattheaccesslist permitstheoperation,thethird stepis to checkthattheOID
of the target is in oneof the object capabilityattributes. If thereareobject capabilityattributes
presentandthetargetof theoperationis not in oneof thecapabilities,therequestwill berejected.

The fourth andfinal stepis to checkfor the permissionattribute. If thereis no identity
attributeandthereis no permissionattributeandthefirst attributesetis beingevaluated,thekey is
rejectedasinvalid. If a permissionattribute is present,thekey is rejectedif oneof thepermission
attributesdoesnotallow therequestedoperation.

The stepsare repeatedfor eachset of attributes in the attribute set. If the key is not
requestedin any of thepasses,theoperationis permittedby thekey data. Beforetheoperationis
actuallycarriedout,thefreshnessguaranteesmuststill becheckedandthekey correspondingto the
key datamustbegeneratedandtheMAC checked.

60

Appendix B

Pseudo-RandomFunctions

Thefollowing wastakenfrom thelecturenotes[14] of CynthiaDwork’s Foundationsof
CryptographyclassatStanford.Thesenotesdraw heavily from [37, 19, 33].

A truly randomfunction ÈrÉÊ¾aË0Ìz½\¿zÍ�¼ÊÎÏ¾aË0Ìz½\¿zÍ hasno short(polynomialin Ð -sized)
representation.Intuitively, a pseudo-randomfunction ÑrÒ;Ñ@Ó?É�¾aË0Ìz½\¿ Í ¼_Î ¾aË0Ìz½\¿ Í ,
specifiedby a short(say, ÔnÕTÐ�Ö -bit) seed,is polynomial-timeindistinguishablefrom a
truly randomfunction, in thata polynomial-timeboundedadversary, queryinga func-
tion × at adaptively chosenpoints ØgÙÚ¾aË0Ìz½\¿ Í , cannotdeterminewhether× is pseudo-
randomor truly random.

Û�Û�Û

Notation. Let Ü denotethe setof all naturalnumbers.Let
Æ Í denotethe setof all

Ð -bit strings, ¾aË0Ìz½\¿ Í . Let Ý Í denotethe randomvariableuniformly distributedoverÆ Í .
Thefollowing definitionsaretakenfrom [37]. Seealso[19, 33].

Informally, apseudo-randomfunctionensembleis anefficientdistribution of functions
that cannotbe efficiently distinguishedfrom the uniform distribution. That is, an ef-
ficient algorithmthat getsa function asa black box cannottell (with non-negligible
successprobability)from which of thedistributionsit wassampled.To formalizethis,
we first definefunctionensemblesandefficient functionensembles:

Definition 4 (function ensemble).Let Þ and ß beanytwo ÜáàÎ¢Ü functions.An
Æ%â àÎÆ�ã

functionensembleis a sequenceä;Òå¾aä Í ¿ ÍXæ\ç of randomvariables,such that the
randomvariable ä Í assumesvaluesin thesetof

Æ�âJè Í%é�àÎ Æ ã è Í%é functions.TheuniformÆ â àÎ Æ�ã functionensemble, ê Ò�¾aê Í ¿ Í�ækç , has ê Í uniformlydistributedover theset
of
Æ%â+è Í�é�àÎ Æ ã è Í�é functions.

Definition 5 (efficiently computablefunction ensemble).
A functionensemble, ä�Ò�¾aä Í ¿ ÍXæ\ç , is efficiently computableif there exist probabilis-
tic polynomial-timealgorithms,ë and ì , anda mappingfromstringsto functions,í ,
such that í�ÕîëïÕ+½ Í ÖJÖ and ä Í are identicallydistributedand ìRÕTð�ÌJØ"ÖñÒVÕ
í�ÕTðxÖJÖòÕTØ"Ö .
We denoteby È\ó thefunctionassignedto ð (i.e. È\ó�ôòõDöÒ¢í�ÕTð+Ö). We refer to ð asthekey of
È ó andto ë asthekey-generating algorithmof ä .

61

For simplicity, we concentrateon the definition of pseudo-randomfunctionsandon
their constructionon length-preservingfunctions. Thedistinguisher, in our setting,is
definedto beanoraclemachinethatcanmake queriesto a length-preservingfunction
(which is eithersampledfrom thepseudo-randomfunctionensembleor from theuni-
form functionensemble).We assumethaton input ½òÍ theoraclemachinemakesonly
Ð -bit queries.For any probabilisticoraclemachine,÷ , andany

Æ Í àÎ Æ Í function, Ô ,
we denoteby ÷ùø1Õ+½ Í Ö thedistribution of ÷ ’s outputon input ½ Í andwith accessto
Ô .

Definition 6 (efficiently computablepseudo-randomfunction ensemble).Anefficiently
computable

Æ ÍgàÎ Æ Í functionensemble, äúÒû¾aä Í ¿ Í�ækç , is pseudo-randomif for ev-
ery probabilistic polynomial-timeoracle machine ÷ , every polynomialü�ÕxýþÖ , and all
sufficiently large Ð ’s

ÿÿ������ ÷��	�ÊÕ+½ Í Ö�Ò ½�
-¼ ����� ÷
���_Õ+½ Í Ö�Ò ½�
 ÿÿ�� ½
ü�ÕTÐ�Ö

where ê¤Ò�¾aê Í ¿ Í�ækç is theuniform
Æ Í àÎ Æ Í functionensemble.

In this thesiswe usethe term “pseudo-randomfunctions” as an abbreviation for “effi-
ciently computablepseudo-randomfunction ensemble”.We alsorefer to the key, ð , of È ó asthe
secretusedwith thepseudo-randomfunction.

62

Bibliography

[1] M. G. Baker, J. H. Hartman,M. D. Kupfer, K. W. Shirriff, andJ. K. Ousterhout,“Measure-
mentsof a distributedfile system,” in Proceedingsof the13thSymposiumon Operating Sys-
tems, pp.198–212,ACM, October1991.

[2] M. Bellare,R.Canetti,andH. Krawczyk,“K eying hashfunctionsfor messageauthentication,”
in Advancesin Cryptology – Crypto96 Proceedings, pp.1–15,1996.

[3] M. Bellovin andM. Merritt, “Limitations of theKerberosauthenticationsystem,” in Proceed-
ingsof theWinter 1991USENIXConference, pp.253–267,January1991.

[4] S.M. Bellovin, “Securityproblemsin theTCP/IPprotocolsuite,” ComputerCommunication
Review, vol. 19,pp.32–48,April 1989.

[5] R. Bird, I. Gopal,A. Herzberg, P. Janson,S. Kutten,R. Molva, andM. Yung, “The Kryp-
toKnight family of light-weightprotocolsfor authenticationandkey distribution,” IEEE/ACM
Transactionson Networking, vol. 3, pp.31–41,February1995.

[6] M. Blaze,“A cryptographicfile systemfor UNIX,” in FirstACM Conferenceon Communica-
tion andComputingSecurity, pp.9–16,November1993.

[7] R. C. Burns,R. M. Rees,andD. D. E. Long, “Safe cachingin a distributed file systemfor
network attachedstorage,” in InternationalParallel and DistributedProcessingSymposium,
May 2000.

[8] B. Callaghan,B. Pawlowski, andP. Staubach,“NFS version3 protocolspecification.” RFC
1813,June1995.

[9] J.P. Chandler, D. C. Arrington,D. R. Berkelhammer, andW. L. Gill, IdentificationandAnal-
ysisof ForeignLawsandRegulationsPertainingto theUseof Commercial EncryptionProd-
uctsfor VoiceandDataCommunications. NationalIntellectualPropertyLay Institute,George
WashingtonUniversity, Washington,D.C.,January1994.

[10] J. S. Chase,D. C. Anderson,A. J. Gallatin,A. R. Lebeck,andK. G. Yocum,“Network I/O
with trapeze,” in HOT Interconnects, IEEE,August1999.

[11] M. Dahlin,ServerlessNetworkFile Systems. PhDthesis,Universityof CaliforniaatBerkeley,
1995.

[12] T. DierksandC. Allen, “The TLS protocolversion1.0.” RFC2246,January1999.

63

[13] W. Diffie andM. E. Hellman,“New directionsin cryptography,” IEEE Transactionson Infor-
mationTheory, pp.644–654,November1976.

[14] C. Dwork, “The non-malleability lectures.” http://Theory.Stanford.EDU/˜gdurf/cs359-
s99/notes1a.ps,1999.Excerptquotedin appendixB.

[15] C. Everhart,“Securityenhancementsfor DCEDFS.” OSFRFC90.0,February1996.

[16] S.Floyd, V. Jacobson,C. Liu, S.McCanne,andL. Zhang,“A reliablemulticastframework for
lightweightsessionsandapplicationlevel framing,” IEEE/ACM Transactionson Networking,
vol. 5, pp.784–803,December1997.

[17] G. A. Gibson,D. F. Nagle,K. Amiri, J.Butler, F. W. Chang,H. Gobioff, C. Hardin,E. Riedel,
D. Rochberg, andJ.Zelenka,“A cost-effective, high-bandwidthstoragearchitecture,” in Pro-
ceedingsof the 8th Conferenceon Architectural Supportfor ProgrammingLanguages and
Operating Systems, pp.92–103,October1998.

[18] H. Gobioff, Securityfor a High PerformanceCommodityStorage Subsystem. PhD thesis,
Carnegie Mellon University, 1999.

[19] O. Goldreich,S.Goldwasser, andS.Micali, “How to constructrandomfunctions,” Journalof
theAssociationfor ComputingMachinery, vol. 3, no.4, pp.792–807,1986.

[20] O. Goldreich,Foundationsof Cryptography (Fragmentsof a Book). WeizmannInstituteof
Science,February1995.

[21] B. Grönvalli, A. Westerlund,andS. Pink, “The designof a multicast-baseddistributed file
system,” in Proceedingsof theThird SymposiumonOperatingSystemsDesignandImplemen-
tation, pp.251–264,USENIX, September1999.

[22] J.H. HartmanandJ.K. Ousterhout,“The Zebrastripednetwork file system,” in Proceedings
of the14thSymposiumon Operating SystemsPrinciples, pp.29–43,ACM, December1993.

[23] D. Hitz, J. Lau, andM. Malcom, “File systemdesignfor an NFS file server appliance,” in
USENIXSanFrancisco1994Winter Conference, pp.235–246,January1994.

[24] J. H. Howard, M. L. Kazar, S. G. Menees,D. A. Nichols, M. Satyanarayanan,R. N. Side-
botham,andM. J.West,“Scaleandperformancein a distributedfile system,” in ACM Trans-
actionson ComputerSystems, vol. 6.1,pp.51–81,February1988.

[25] IBM, IBM General Parallel File Systemfor AIX: InstallationandAdministration Guide, sec-
onded.,October1998.

[26] R. H. Katz, “High performancenetwork andchannel-basedstorage,” Tech.Rep.UCB/CSD
91/650,Universityof CaliforniaatBerkeley, Sept.1991.

[27] M. L. Kazar, B. W. Leverett, O. T. Anderson,V. Apostolides,B. A. Bottos, S. Chutani,
C. F. Everhart,W. A. Mason,S.-T. Tu, andE. R. Zayas,“DEcorumfile systemarchitectural
overview,” in Proceedingsof theUsenixSummer1990Technical Conference, (Berkeley, CA,
USA), pp.151–164,UsenixAssociation,June1990.

64

[28] S. R. Kleiman, “Vnodes: An architecturefor multiple file systemtypesin Sun UNIX,” in
USENIXsummerconference, pp.238–247,USENIX, 1986.

[29] J. T. Kohl and B. C. Neuman,“The Kerberosnetwork authenticationservice.” RFC 1510,
September1993.

[30] H. Krawczk,M. Bellare,andR.Canetti,“HMA C: Keyed-hashingfor messageauthentication.”
RFC2104,February1997.

[31] E. K. LeeandC. A. Thekkath,“Petal: Distributedvirtual disks,” in 7th InternationalConfer-
enceonArchitectural Supportfor ProgrammingLanguagesandOperatingSystems(ASPLOS-
96), pp.84–92,October1996.

[32] D. D. E.Long,B. R.Montague,andL.-F. Cabrera,“Swift/RAID: A distributedRAID system,”
ComputingSystems, vol. 7, pp.333–359,Summer1994.

[33] M. Luby, Pseudorandomnessand Cryptographic Applications. PrincetonUniversity Press,
1996.

[34] M. K. McKusic,W. N. Joy, S.J.Leffler, andR.S.Fabry, “A FastFile Systemfor UNIX,” ACM
Transactionson ComputerSystems, vol. 2, pp.181–197,August1984.

[35] R. Merkle, “Securecommunicationover insecurechannels,” Communicationsof the ACM,
vol. 21,no.4, pp.294–299,1978.

[36] P. V. Mockapetris,“Domainnames– conceptsandfacilities.” RFC1034,November1987.

[37] M. NaorandO. Reingold,“Synthesizersandtheir applicationto theparallelconstructionof
pseudo-randomfunctions,” JCSS:Journalof ComputerandSystemSciences, vol. 58,1999.

[38] R. M. NeedhamandM. D. Schroeder, “Using encryptionfor authenticationin largenetworks
of computers,” Communicationsof theACM, vol. 21,pp.993–999,dec1978.

[39] B. Nelson,B. Welch, andJ. Ousterhout,“Caching in the spritenetwork file system,” ACM
Transactionson ComputerSystems, pp.134–154,January1988.

[40] C. NeumannandT. Ts’o, “K erberos:An authenticationservicefor computernetworks,” IEEE
CommunicationsMagazine, September1994.

[41] The OpenGroup, Protocols for X/OpenPC Internetworking: SMB, Version 2, September
1992.

[42] J.K. Ousterhout,H. D. Costa,D. Harrison,J.A. Kunze,M. Kupfer, andJ.G. Thompson,“A
trace-drivenanalysisof theUNIX 4.2BSDfile system,” in Proceedingsof the10thSymposium
on Operating SystemsPrinciples, pp.15–24,December1985.

[43] J.K. Ousterhout,H. D. Costa,D. Harrison,J.A. Kunze,M. Kupfer, andJ.G. Thompson,“A
trace-drivenanalysisof theUNIX 4.2BSDfile system,” in Proceedingsof the10thSymposium
on Operating SystemPrinciples, pp.15–24,December1985.

65

[44] D. A. Patterson,G. Gibson,andR. H. Katz,“A casefor redundantarraysof inexpensive disks
(RAID),” in Proceedingsof the1988ACM Conferenceon Managementof Data (SIGMOD),
pp.109–116,June1988.

[45] J.Postel,“RFC 793: Transmissioncontrolprotocol.” RFC793,September1981.

[46] B. Preneel,A. Bosselaers,R. Govaerts,andJ.Vandewalle, “A chosentext attackon themod-
ified cryptographicchecksumalgorithmof cohenandhuang,” in Advancesin Cryptology –
Crypto89 Proceedings, pp.154–163,1989.

[47] E. Riedel and G. Gibson, “Understandingcustomerdissatisfaction with underutilizeddis-
tributedfile servers,” in Proceedingsof the Fifth NASAGoddard SpaceFlight CenterCon-
ference, September1996.

[48] D. M. Ritchie andK. Thompson,“The UNIX time-sharingsystem,” Communicationsof the
ACM, vol. 17,pp.365–375,July1974.

[49] R. Rivest,“The MD5 message-digestalgorithm.” RFC1321,April 1992.

[50] R. L. Rivest,A. Shamir, andL. M. Adleman,“A methodfor obtainingdigital signaturesand
public-key cryptosystems,” Communicationsof theACM, pp.120–126,February1978.

[51] M. RosenblumandJ.K. Ousterhout,“The designandimplementationof a log-structuredfile
system,” in Proceedingsof the 13th Symposiumon Operating SystemsPrinciples, pp. 1–15,
ACM, October1991.

[52] M. Sach,A. Leff, andD. Sevigny, “LAN andI/O convergence:A survey of the issues,” in
IEEE Computer, pp.24–32,December1994.

[53] R. Sandberg, D. Goldberg, S. Kleiman,D. Walsh,andB. Lyon, “Designandimplementation
of the Sunnetwork file system,” in USENIXConferenceProceedings,USENIXAssociation,
Berkeley, CA,Summer, pp.119–130,1985.

[54] C. A. Thekkath,T. Mann,andE. K. Lee,“Frangipani:A scalabledistributedfile system,” in
2ndSymposiumon Operating SystemsDesignand Implementation(OSDI-96), pp. 224–237,
USENIX, October1997.

[55] U.S.Departmentof State,“Internationaltraffic in armsregulations(ITAR).” 22CFR120-130,
Officeof MunitionsControl,November1989.

[56] U.S. Departmentof State,“Defensetraderegulations.” 22 CFR 120-130,Office of Defense
TradeControls,May 1992.

[57] U.S. Government,“Proposedfederal information processingstandardfor digital signature
standard(DSS).” FederalRegister, August1991.

[58] U.S. Government,“Proposedfederalinformationprocessingstandardfor securehashstan-
dard.” FederalRegister, January1992.

[59] R. vanRennesse,A. S. Tanenbaum,andA. Wilschut,“The designof a high-performancefile
server,” in Proceedingsof the9thInternationalConferenceonDistributedComputingSystems,
IEEE, pp.22–27,June1989.

66

[60] M. Wittle andB. Keith, “LADDIS: Thenext generationin NFSfile server benchmarking,” in
USENIXSummerConference, pp.111–128,USENIX, June1993.

