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ABSTRACT

Identifying groups of blocks that tend to be read or written
together in a given environment is the first step towards pow-
erful techniques for device failure isolation and power man-
agement. For example, identified groups can be placed to-
gether on a single disk, avoiding excess drive activity across
an exascale storage system. Unlike previous grouping work,
we focus on identifying groupings in data that can be gath-
ered from real, running systems with minimal impact. Using
temporal, spatial, and access ordering information from an
enterprise data set, we identified a set of groupings that con-
sistently appear, indicating that these are working sets that
are likely to be accessed together. We present several tech-
niques to obtain groupings along with a discussion of what
techniques best apply to particular types of real systems.
We intend to use these preliminary results to inform our
search for new types of workloads with a goal of identifying
properties of easily separable workloads across different sys-
tems and dynamically moving groups in these workloads to
reduce disk activity in large storage systems.

Categories and Subject Descriptors

B.4 [Input/Output and Data Communications]: Mis-
cellaneous

General Terms

Measurement
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1. INTRODUCTION
Grouping data on disk provides benefits such as being able

to avoid track boundaries [23], isolate faults [24], and avoid
power consumption from excessive disk activity [19]. On
exascale systems, these benefits are magnified because every
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element in a group may be on separate disks, necessitating
many extra spin-ups that both waste power and decrease the
lifetime of the system [29, 20]. Identifying these groups has
been a hot research area for some time, with significant work
done to bridge the gap between the semantic information
provided by the file system and the behavior of the physical
disk controller [4, 25, 24]. We build on this work, but focus
on performing the grouping on data that can be collected
non-intrusively from a running system with no modifications
to the system itself other than attaching a protocol analyzer
to the disk bus. On a real system, it is frequently impossible
to put in hooks to collect even file-level access data. It is
even harder to label data in any way useful for grouping as
the data is written. Our method assumes that all we have is
enough physical access to place a protocol analyzer on the
storage bus to gather our data.

Cache prefetching and clustering active disk data exploits
the fact that recently accessed data is more likely to be ac-
cessed again in the near future on a typical server [26]. Un-
like several techniques that group data based on popularity
or “hotness,” we group data by likelihood of contemporane-
ous and related access regardless of the likelihood for the
group, or any of its members, to be accessed at all. We
also present partitioning algorithms including graph theo-
retic techniques that have not yet been considered for pre-
dictive grouping.

Before we can do any system partitioning, we need to de-
fine what it means for two disk accesses to be similar, which
leads to defining a distance metric for accesses. Defining
a distance metric that captures the relationship between
disk accesses without over-fitting or underestimating rela-
tionships is crucial to forming meaningful groups. We intro-
duce a set of methods for defining similarity and partition-
ing data into working sets, and we apply these methods to
a multi-week workload trace from a multi-application server
used for computer science research to test our definitions
of similarity and the utility of the working sets that the
partitioning algorithms built over this similarity calculation
return. While we do not delve into the high-level origins
of working sets, these origins could include an application
that always accesses a particular subset of data, a user who
tends to stay in their home directory, or a class working to-
gether on a project stored in a particular space. Focusing
only on the trace allows us to adapt as the use of the system
evolves. Also, this method of characterization could expose
previously undetected high level activity.

Our goal is to identify and rigorously define similarity
between disk accesses from different applications and use



this similarity to uncover groupings within the data (“work-
ing sets”) with the eventual goal of dynamically rearranging
blocks of data on disk such that working sets have physi-
cal locality. While single-use servers with predictable access
patterns are common in large environments, smaller institu-
tions and single users run several applications on the same
server. This makes accesses on a shared disk appear ran-
dom and makes it difficult to group data on the disk to take
advantage of access locality. Large, long term storage sys-
tems that grow organically also develop heavily interleaved
access patterns as more use cases are added to the system.
Our grouping techniques are designed to untangle accesses
made by different agents in order to provide better guide-
lines for on-disk placement of data in the future.
After reviewing other work in the field, we present our sim-

ilarity metric and partitioning algorithms, along with a dis-
cussion of how parameters are selected and which method-
ology is best suited to which workload. We then present the
working set groupings that each of these partitioning algo-
rithms return. We then discuss the validity of our groupings,
and conclude with a discussion of the implications of our
groupings and the work we are currently doing to both im-
prove groupings and characterize workloads based on ability
to be grouped into working sets.

2. RELATED WORK
Grouping data for performance gains and other optimiza-

tions has a long history. The original BSD FFS aimed to lo-
calize associated data and metadata blocks within the same
cylinder groups to avoid excessive seeks [16].
Subsequent projects have focused on specific workloads

or applications where grouping could provide a benefit. The
DGRAID project demonstrated that placing blocks of a file
adjacent to each other on a disk reduced the system impact
on failure, since adjacent blocks tend to fail together [24].
Localizing the failure to a specific file reduces the number of
files that have to be retrieved from backups. Our grouping
methodology will allow for failures to be localized to working
sets, which represent use cases, allowing more of the system
to be usable in case of failure. Schindler et al. show the
potential gain from groupings by defining track-aligned ex-
tents and showing how careful groupings prevent accesses
from crossing these borders [23]. They also demonstrate the
prevalence of sequential full-file access, and make a strong
case for predicting access patterns across data objects in en-
vironments with small files. Since most files in a typical
mixed workload are still under 3000 bytes [27], we believe
our technique can be used to help define track-aligned ex-
tents.
Arpaci-Dusseau et al. have made a variety of advances in

semantically aware disk systems [25, 4]. Their online infer-
ence mechanism had trouble with the asynchronous nature
of modern operating systems. We use a longer history of
block associations to un-couple the relationships between
applications, and we are working on implementing their in-
ference techniques as a secondary classification layer. Their
techniques for inode inference and block association gain a
great amount of information by querying the blocks, however
there is an implicit assumption here that we can identify and
parse the metadata. We collect only the bare minimum of
data, which allows our algorithms to work almost domain-
blind.
Dorimani et al. discuss a need for characterization of

HPC workloads for the purpose of file grouping [8]. They
also demonstrate a grouping using static, pre-labeled groups,
where the mean group size is about an order of magnitude
larger than the mean file size. Pre-labeled groupings such as
these are hard to obtain for general workloads, and they are
susceptible to evolving usage patterns and other variation in
workload. By focusing on the core issue of inter-access simi-
larity, we hope to be able to form dynamic groups from real-
time access data. Oly and Reed present a Markov model to
predict I/O requests in scientific applications [18]. By focus-
ing on scientific applications, their work bypasses the issue
of interleaved groups. Yadwadkar et al. also use Markov
modeling, and they apply their model to NFS traces, doing
best when groups are not interleaved [30]. Their method is
more difficult to adapt to online data than the algorithm we
present.

Essary and Amer provide a strong theoretical framework
for power savings by dynamically grouping blocks nearby
on a disk [11]. Other predictive methods have shown good
results by offering the choice of “no prediction,” allowing
a predictor to signal uncertainty in the prediction [2]. C-
Miner uses frequent sequence matching on block I/O data,
using a global frequent sequence database [15]. Frequent
sequence matching is susceptible to interlaced working sets
within data and thus best for more specialized workloads,
whereas our technique is suitable for multi-application sys-
tems.

Caching can be defined as looking for groupings of data
that are likely to be accessed soon, based on any one of a
number of criteria. Caching algorithms can even be adap-
tive and pick a cache criteria based on what provides that
best hit rate [3]. The cache criteria can involve file or block
grouping [19], but typically only in the context of group-
ing together popular or hot blocks of the system [28]. This
is necessary because cache space is precious, so placing re-
lated, but less accessed data into the cache would only serve
to pollute it [31]. DULO biases the cache towards elements
that have low spatial locality, increasing program through-
put, but is affected by cache pollution issues for data that
is rarely accessed [12].

Our work is strongly based on previous work in cache
prefetching techniques that predict file system actions based
on previous events. Kroeger and Long examined using a
variant of frequent sequence matching to prefetch files into
cache [13, 14]. Their work provides strong evidence that
some workloads (Sprite traces, in this case) have consistent
and exploitable relationships between file accesses. We are
targeting a different problem, though with the same moti-
vations. Instead of deciding what would be most advan-
tageous to cache, we would like to discover what is most
important to place together on disk so that when the cache
comes looking for it, the data has high physical locality and
can be transferred to cache with minimal disk activity. We
assume that our methods will be used alongside a traditional
cache because they complement each other, and it has been
shown that both read and write caches amplify the benefits
of grouping [17].

Minimizing disk activity for disk accesses is especially im-
portant on some types of systems such as MAID where data
is distributed around mostly idle disks [5]. Diskseen per-
forms prefetching at the level of the disk layout using a com-
bination of history and sequence matching [7]. Pinheiro and
Bianchini group active data together on disk to minimize



the total number of disk spin-ups, but they are vulnerable
to workloads where a several blocks are typically accessed
together, but accessed infrequently [19]. In a large system
for long-term storage, the effect of these infrequent accesses
can accumulate to be a large drain on power [29].
Our end goal is to tease apart the accesses instigated by

separate applications in order to obtain sets of blocks that
are likely to be read or written to together. In our data,
we find that the read:write ratio is almost 10:90, implying
that our workload is directly comparable to the workload
for personal computers with single disks in Riska’s workload
characterization study [22]. Riska also suggests the idea of
using a protocol analyzer to collect I/O data without im-
pacting the underlying system.

3. DESIGN
The primary design goal of our system is to identify work-

ing sets in a variety of workloads that are persistent over
time and under changing conditions. Our classification scheme
has two components: the distance metric used for determin-
ing distance between data points and the partitioning algo-
rithm that identifies working sets based on these distances.
We offer three different partitioning algorithms and explain
how each could fit a particular type of workload and envi-
ronment.
To derive “points” from block I/O traces, we treat the

block offset on disk as a unique identifier for a location on
the physical disk. Distances are calculated between points of
the form 〈time, offset〉 or 〈time, (offset , size)〉, as indicated.
Throughout this work, we treat the offset an access was
made to as a unique identifier. This assumption is generally
true for application files and other static filesystem compo-
nents, though it will break down for volatile areas such as
caches. Making this assumption allows us to use very sparse
data for our analysis.
In the course of our work we have discovered that, gener-

ally, obtaining data to do predictive analysis is easier if one
can make a clear argument that sharing data will not create
any privacy concerns for the source organization. This con-
cern is part of the reason much modern research in predictive
grouping uses data five to ten years out of date if they use
real data at all. To ensure that our work is broadly applica-
ble, we assume a workload that contains nothing more than
a block offset, size, type, and timestamp for every access.
Here, “type” refers only to whether the access was a read
or a write. In addition to alleviating privacy concerns, this
type of data is straightforward to collect without impacting
the performance of high performance systems. Riska et al.
demonstrate this by using a protocol analyzer to collect this
data from the disk bus [22].

3.1 Calculating Distance
All but one of the partitioning algorithms we present de-

pend on a pre-calculated list of distances between every pair
of points, where points each represent single accesses and
are pairs of timestamps and block offsets. We experimented
with adding the size of the I/O to the points, but we found
this decreased the signal to noise ratio of our data consid-
erably. In a dataset with more fixed size accesses, using
(offset , size) should result in a tighter classification.

3.1.1 Distance Matrices

We present distance to our partitioning algorithms in two
ways. The first is a simple n × n matrix that represents
the distance between every pair of accesses (pi, pj), with
d(pi, pi) = 0 and n being the number of accesses in our
workload. We calculate the distances in this matrix using
simple weighted Euclidean distance, defined as d(pi, pj) =

d(pj , pi) =
√

tscale× (ti − tj)2 + oscale× (oi − oj)2 where
a point pi = (ti, oi) and the variables are t =time, o = block
offset, and tscale and oscale are weighting factors that are
data dependent. We hypothesize that the scaling factors
are dependent on the frequency of accesses in the work-
load, though we found that in our test workload altering
the weighting factors by small amounts from had little effect
on the result. We chose to use weighted Euclidean distance
because we wanted to help offset the temporal bias in our
distance metrics.

In this global comparison of accesses, we were most in-
terested in recurring block offset pairs that were accessed in
short succession. As a result, we also calculated an m ×m

matrix, where m is the number of unique block offsets in
our data set. This matrix was calculated by identifying all
the differences in timestamps T = [T1 = ti1 − tj1, T2 =
ti1 − tj2, T3 = ti2 − tj1, . . .] between the two offsets oi and
oj . Note that T is the difference in timestamps over the set
of all pairs of accesses in the system. At this stage, we do not
filter for temporal proximity in order to include weaker but
possibly still relevant correlations in our workload. After
some experimentation, we decided to treat the unweighted
average of these timestamp distances as the time element in
our distance calculation. Also, since we are interested in the
relative weight between temporal and spatial difference, we
set tscale = 1. Thus, the distance between two offsets is:

d(oi, oj) =

√

√

√

√

(

∑|T |
i=1

Ti

|T |

)

2

+ oscale× (oi − oj)2

We chose mean over median because of the variability in the
potential workloads. Since our end goal is to group working
sets together on disk and catch long tail accesses during a
disk spin period, we can not disregard the outlier offset pairs.

3.1.2 Ranged and Leveled Distance Lists

Calculating the full matrix of distances is computation-
ally prohibitive with very large traces and impossible in an
online system. We need to handle real-time data where re-
lationships within the data are likely to have to have a set
lifetime, so we also looked into creating lists of distances be-
tween the most relevant pairs of offsets. To do this, we bias
towards offsets that are close in time. For very dense work-
loads, we suggest choosing a range r in time around each
point and calculating the distances from that point to all
of the accesses that fall in range, averaging the timestamps
for accesses that occur with the same offset, as in the previ-
ous section. For real-time traces, the range has to be large
enough to capture repeated accesses to each central point to
reduce noise.

For static traces, we have the ability to paint a more com-
plete picture of how a given offset is related to other offsets.
Instead of calculating ranges around each point, we calculate
ranges around each instance of a given offset oi by calculat-
ing the distance list around each of N instances of the offset,

rDist(oi1) = [(oj , d(oi1, oj)), (ok, d(oi1, ok), . . .]



. We then take the list that each instance returns and com-
bine them. This gives us a better understanding of trends in
our trace and strength of association. If an offset oi appears
next to oj multiple times, we have more reason to believe
they are related. To combine the list, we first create a new
list of the offsets that only appear in one of our lists (these
being elements that do not need to be combined). For the re-
maining elements, we take the sum inversely weighted by the
time between their occurrences. For example, say we have
an offset o that is accessed twice in our trace, at times t1
and t2, with distance lists: [(o, oi, d(o, oi)1), (o, oj , d(o, oj)1]
and
[(o, oi, d(o, oi)2), (o, om, d(o, om)2]. The combined distance

list would then be:

[(o, oi, d(o, oi)1 +
d(o, oi)2

|t1 − t2|
, (o, oj , d(o, oj)1, (o, om, d(o, om)2)]

This heavily favors offset pairs that occur near to each other,
which results in dynamic groupings as these relationships
change. Switching the inversely weighted sum to an in-
versely weighted average smoothes this effect, but results
in groups that are less consistent across groupings.
For our data, accesses were sparse enough that it made

more sense to define our range in terms of levels instead
of temporal distance. A level is defined as the closest two
points preceding and succeeding a given access in time. A
k-level distance list around a point pi is then the distance
list comparing pi to the k accesses that occurred beforehand
and the k accesses that occurred afterwards. The distance
lists are calculated the same way as they are for a set range.
We would like to eventually examine trace data in real

time. This introduces an inherent bias towards accesses
that are close in time versus accesses close in space, since
accesses close in time are continuously coming in while ac-
cesses close in space are distributed across the scope of the
trace. Intuitively, this is acceptable because the question we
are trying to answer is “are these blocks related in how they
are accessed,” which implies that we care more about ten
points scattered throughout the system that are accessed,
repeatedly, within a second of each other than we do about
ten points that are adjacent on disk but accessed at random
times over the course of our trace.

3.2 Partitioning Algorithms
Our distance calculations return a definitive answer for

the question “how far is offset a from offset b.” With this
similarity information pre-computed, we now look at the
actual grouping of accesses into working sets.

3.2.1 Neighborhood Partitioning

Neighborhood partitioning is an on-line, agglomerative
technique for picking working sets based on immediate local-
ity. This is the only one of our techniques that does not use
a pre-calculated distance list. Instead, we start with a set of
accesses ordered by timestamp. We first calculate a value for
the neighborhood threshold, T . In the online case, T must
be selected a priori and then re-calculated once enough data
has entered the system to smooth out any cyclic spikes. The
amount of data you need depends on what is considered a
normal span of activity for the workload. In the static case,
T is global and calculated as a workload-specific weight-
ing parameter times the standard deviation of the accesses,
assuming the accesses are uniformly distributed over time.
Determining the weighting parameter falls under the sphere

Figure 1: Neighborhood partitioning

of workload characterization, which is outside the scope of
this paper. Once the threshold is calculated, the algorithm
looks at every access in turn. The first access starts as a
member of group 1. If the next access occurs within T , the
next access is placed into group 1, otherwise, it is placed
into a new group, and so on. Figure 1 illustrates a simple
case with two working sets and the beginning of a third in
yellow.

Neighborhood partitioning is especially well-suited to rapidly
changing usage patterns because it operates on accesses in-
stead of offsets. When an offset occurs again in the trace, it
is evaluated again, with no memory of the previous occur-
rence. This is also the largest disadvantage of this technique:
most of the valuable information in block I/O traces lies in
repeated correlations between accesses. The groups that re-
sult from neighborhood partitioning are by design myopic
and will miss any trend data.

The main use we foresee for neighborhood partitioning in
static traces is to determine whether the trace is separable
enough to make more computationally intensive methods
worthwhile. It is computationally the fastest technique we
explored; it runs in O(n) since it only needs to pass through
the access space twice: once to calculate the neighborhood
threshold and again to collect the working sets. We also
can easily influence the average group size by weighting the
threshold value.

3.2.2 Nearest Neighbor

k-nearest-neighbor (k-NN) is a standard machine learning
technique that relies on the identification of neighborhoods
where the probability of group similarity is highest [10]. In
the canonical case, a new element is compared to a large
set of previously labeled examples using a distance metric
defined over all elements. The new element is then classi-
fied into the largest group that falls within the prescribed
neighborhood. This is in contrast to neighborhood parti-
tioning where everything within a neighborhood is in the
same group.

For this work, we modified the basic NN algorithm to be
unsupervised (i.e., not rely on pre-determined working set
labels, which we cannot assume we have) and incorporate
weights. The goal of weighting is to lessen the impact of
access to offsets that occur frequently and independently of
other accesses. In particular, in the absence of weights it is
likely that a workload with an on-disk cache would return
a single group, where every element has been classified into
the cache group. Similar effects occur with a background
process doing periodic disk accesses.

In our algorithm, we start with an m×m distance matrix
as defined in Section 3.1. Instead of restricting the number
of neighbors directly, we define a neighborhood set parame-
ter k by taking the average distance between offsets in our
dataset and multiplying it by a weighting factor. For the first
offset, we label all of the offsets within k of that offset into a
group. For subsequent offsets, we scan the elements within



Figure 2: A clique cover of a graph of accesses.
Nodes represent accesses while edges represent at
least a threshold level of similarity between edges.

k of our offset and place our offset in the best represented
group. The value of k is the most important parameter in
our weighted nearest neighbor algorithm. If the workload
consists of cleanly separable groups, it should be easier to
see groupings with smaller values of k. On the other hand,
a small value of k can place too much weight on accesses
that turn out to be noise. Noisy workloads reduce the accu-
racy of nearest neighbor because with a large k, the groups
frequently end up too large to be useful. We found that as
long as we start above the average distance, the weighting
factor on k did not have a large influence until it got to be
large enough to cover most of the dataset.

3.2.3 Graph Covering

The next method we used begins with representing ac-
cesses as nodes in a graph and edges as the distance between
nodes. Presenting this information as a graph exposes the
interrelationships between data, but can result in a thick
tangle of edges. A large, fully connected graph is of little
use, so we determined a threshold of similarity beyond which
the nodes no longer qualify as connected. This simplifies our
graph and lowers our runtime, but more importantly remov-
ing obviously weak connections allows us to identify groups
based on the edges that remain connected. This does not
impact classification since these edges connect nodes that
by definition bear little similarity to each other. Once we
have this graph, we define a group as all sets of nodes such
that every node in the set has an edge to every other node
in the set; this is defined as a clique in graph theory. Fig-
ure 2 shows an example clique covering of an access graph.
Note that every element is a member of a single working set
which corresponds to the largest of the potential cliques it
is a member of. The problem then of finding all such sets
reduces to the problem of clique cover, which is known to
be NP-complete and difficult to approximate in the general
case [6].
Though clique cover is difficult to approximate, it is much

faster to compute in workloads with many small groups and
relatively few larger groups. We begin by taking all the
pairs in a k-level distance list and comparing them against
the larger data set to find all groups of size 3. This is by
far the most time-intensive step, running in O(n2). We then
proceed to compare groups of size 3 for overlap, and then
groups of size 4, etc., taking advantage of the fact that a fully
connected graph Kn is composed of two graphs Kn − 1 plus
a connecting edge to reduce our search space significantly.
As a result, even though the worst case for our algorithm is
O(nG) (in addition to the distance list calculation), where n
is the number of nodes and G the size of the maximal group,

Table 1: Sample Data
Timestamp Type Block Offset Size Response Time

128166372003061629 Read 7014609920 24576 41286

128166372016382155 Write 1317441536 8192 1963

128166372026382245 Write 2436440064 4096 1835

but our real runtime is closer to n2 + m3 + r4 + . . . + zG,
where n ≫ m ≫ r ≫ z and m, r, and z are the number of
groups of size three, four, and G, respectively.

We discovered that in typical workloads, this method is
too strict to discover most groups. This is likely because the
accesses within a working set are the result of an ordered
process. This implies that while the accesses will likely oc-
cur within a given range, the first and last access in the set
may look unrelated without the context of the remainder of
the set and thus lack an edge connecting them. We fix this
by returning to an implicit assumption from the neighbor-
hood partitioning algorithm that grouping is largely transi-
tive. This makes intuitive sense because of the sequential
nature of many patterns of accesses, such as those from an
application that processes a directory of files in order.

In our transitive model, we use a more restrictive thresh-
old to offset the tendency for intermittent noise points to
group together otherwise disparate groups of points. We
then calculate the minimum spanning tree of this graph and
look for the longest path. We have to calculate the mini-
mum spanning tree because longest path is NP-complete in
the general case, but reduces to the much simpler negated
shortest-path when working with a tree. We refer to this
technique as the bag-of-edges algorithm because it is similar
to picking up an edge and shaking it to see what strands
are longest. Bag-of-edges is much less computationally ex-
pensive than a complete graph covering and is additionally
more representative of the sequential nature of many appli-
cation disk accesses than our previous graph algorithm. We
found that in our small, mixed-application workload that
this technique offered the best combination of accuracy and
performance.

4. EXPERIMENTS
We tested our partitioning algorithms on a publicly avail-

able dataset from MSR Cambridge. The MSR dataset rep-
resents one week of block I/O traces of enterprise servers
used by researchers at Microsoft Research, Cambridge and
are available from SNIA [17]. We chose these traces for
two reasons: first, they allow us to simulate the bare bones
block-timestamp trace we can collect from a protocol ana-
lyzer. Secondly, these traces were collected in 2007, making
them more recent than most other publicly available block
I/O traces. Among the traces in the collection, we selectively
chose to test those that were from multi-purpose machines
and could thus provide the most interesting results. Table 1
shows a sample set of accesses in our data set. For the sake
of our preliminary analysis, we assume that block offset and
access size form a unique, permanent identifier for a partic-
ular snippet of data. We realize this assumption does not
hold true over the long term or in frequently re-written data,
and we discuss how this could alter our results in section 5.
We classify blocks based on the difference in timestamps,
block offset, and by the order they appear in the trace.

The offsets accessed in our data were spaced between
581632 and 18136895488. Though there are gaps, likely at-



Figure 4: Visualizing the locality as a histogram ex-
poses a localized spike in accesses.

tributable to bad sectors, Figure 3 shows that the offsets are
approximately uniformly distributed, which allows us to use
a consistent distance metric across our search space.
Figure 3(a) shows the accesses by block over time, and

Figure 3(b) highlights the read activity. We see that despite
some denser areas that likely correspond to a cache spike, the
accesses in our data are approximately uniformly distributed
across offsets.
This dataset was very write-heavy with a read/write ratio

of 10:90. This ratio is almost entirely attributable to a small
range of offsets that are likely to represent an on-disk cache.
Figure 4 shows the access spike set against the otherwise
near-uniform access distribution.

4.1 Results
We tested the neighborhood partitioning algorithm on our

data first to get some visibility into what groupings were
present in the data and whether it would be worthwhile to
run our more computationally expensive algorithms. Neigh-
borhood partitioning ended up being very susceptible to
small fluctuations of its initial parameters and to the spike
of writes in our workload. Figure 5 shows the working sets
the algorithm returned with the neighborhood set to half
a standard deviation, calculated over the entire trace. The
read-write workload has a significantly tighter grouping be-
cause the prevalence of the writes in the cache area over-
took any effect of the reads. Isolating the reads, we see in
Figure 5(b) that the working sets become larger and more
prevalent. This is due to the reduction in noise, leading to
stronger relative relationships between the points that are
left. We also notice that this technique is very fragile to the
choice of neighborhood. For example, reducing the neigh-
borhood to a quarter of a standard deviation (Figure 5(c))
causes the number of large groups to fall sharply and corre-
spondingly increases the prevalence of small groups.
Figure 6 shows the working sets returned by running k-

NN with k ranging from 3200 to 25600. The results for
the k-NN working sets are more in line with expectations,
with many more small groups and a few scattered large
groups. The groups are fairly consistent across variation,
with the larger neighborhoods resulting in somewhat fewer

(a) All Accesses

0 100 200 300 400 500 600 700
Group Size

100

101

102

103

104

105

N
u
m

b
e
r 

o
f 

G
ro

u
p
s

Neighborhood Partitioning: std*.5

(b) Read-Only: σ2 ∗ .5

0 100 200 300 400 500
Group Size

100

101

102

103

104

105

N
u
m

b
e
r 

o
f 

G
ro

u
p
s

Neighborhood Partitioning: std*.25

(c) Read-Only: σ2 ∗ .25

Figure 5: Working sets with Neighborhood Parti-
tioning. Groupings vary drastically based on neigh-
borhood size and workload density.
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Figure 3: Block access over time for all accesses and only reads

(a) k = 3200 (b) k = 6400

(c) k = 12800 (d) k = 25600

Figure 6: Working sets with k-Nearest Neighbor. If k is very high or low, fewer large groups are found.



small groups compared to the smaller neighborhoods. Note
that the graphs in Figure 6 are calculated after the cache
group is taken out. The cache group is a group of size
44000 that was consistently identified by both the k-NN and
bag-of-edges algorithms. The consistent identification of this
group is a strong indicator of the validity of our grouping.
For the sake of these graphs, however, removing it increases
the visibility of the other groups and better highlights the
differences between the variations in grouping parameters.
On this dataset, our clique-based graph algorithm failed

to ever find a group above size two. This is useless for ac-
tually grouping data on a system since the potential benefit
to prefetching one element is much smaller than the cost
of doing the partitioning. The small groups are a result of
the strong requirements for being in a group that this algo-
rithm requires: namely that every member in the group be
strongly related to every other member. What this tells us
is that transitivity matters for grouping, i.e., groups are a
set of accesses that occur sequentially. Running the bag-of-
edges algorithm on this data supports this hypothesis. This
algorithm is built with sequentially related groups in mind,
and it returned groupings comparable to k-NN in a fraction
of the time. Figure 7 shows the groupings bag-of-edges re-
turns. The levels in Figure 7 represent the levels for the
n-level distance metric, where larger levels are equivalent to
more lax thresholds. The majority of the groupings are sim-
ilar to k-NN, though at higher levels of distance we lose the
larger groups. This is due to the lack of cohesion in large
groups versus smaller ones. We also suspect that there is
noise interfering with the data when the search window is
too large, similar to the read-write case for neighborhood
partitioning.
Figure 8 provides an example of the stability of bag-of-

edges under varying the weighting factors added to the pa-
rameters that make up the distance metric: namely time
and the difference in offset numbers.

4.2 Validity
Working sets arise organically from how users and applica-

tions interact with the data. Consequently, there is no “cor-
rect” labeling of accesses to compare our results to. Instead,
we focus on self-consistency and stability under parameter
variation. As we saw in Figure 8, the working sets found
by using the graph technique (or k-NN) are relatively stable
under parameter variation as long as the search space for
determining distance between access points remains fixed.
We expect there to be variation here as a result of natural
usage shifts or cyclic usage patterns.
We are analyzing our groupings using a variety of tech-

niques that will be meaningful once we have additional datasets
to compare statistics with. This includes calculating the di-
rect overlap of elements between different groupings of work-
ing sets, calculating mutual entropy between different group-
ings, and calculating a discrete Rand index value across
groupings [21]. In the absence of other data, the numbers tell
us little more than our graphs do. Calculating these indices
for two workloads would be a good first step towards charac-
terizing workloads based on their separability into working
sets. The final determinant of group validity will be the im-
provement in power consumption and system usability that
results in re-arranging data in separable workloads to place
working sets together on disk.

5. DISCUSSION
The most encouraging result of our study was the con-

sistency of groupings in the data despite the sparsity of the
traces. This indicates that it is worthwhile to look for group-
ings in similar multi-user and multi-application workloads
even if the only data available is block offsets and times-
tamps. Being able to collect useful workloads without im-
pacting privacy or performance is invaluable for continuing
research in predictive data grouping. This also reduces the
cost of our analysis substantially, since we can determine
whether a workload will be separable before trying advanced
techniques to identify groupings and disrupting the system
to group working sets together on disk.

A concern early on was that the access groups we discov-
ered would overlap, leading to a need to disambiguate and
manually tune our models to the data set. It turned out,
however, that in every classification scheme we used we never
had overlapping group chains. This allowed us to keep our
methodology general and more likely to be easily portable
to other data. More importantly, this is a strong indica-
tion that our groupings represent separate access patterns.
If they did not, it is likely some of them would have had
over-lapping components since the accesses are uniformly
distributed.

A pressing concern for the viability of this work is the
speed of computations. At this stage, while testing algo-
rithms, we wrote all code in Python and did not optimize
for speed. Under this constraint, the localized distance tech-
niques ran nearly instantaneously while the global techniques,
particularly the graph techniques, took between 20 and 35
minutes per run. We believe that much of this speed can be
regained by tighter code, and online implementations will
handle less data per timestamp than our static test case.

We realize the assumption that block offsets do not uniquely
identify a block is not strictly true in some systems. A ma-
jority of data that is frequently overwritten is in the cache
block, however, and this is consistently identified as a sin-
gle group by our algorithms. The less frequent overwrites
that occur as a result of normal system use should be han-
dled by the adaptability of our algorithms over time. If the
content of a block offset changes, it will start being placed
into different groups as the algorithms update the distance
matrix.

One surprising feature of our dataset was that it had a
long list of consecutive writes to the same block. We believe
that these writes are the result of overwrite activity in a log
or a disk-based cache. These types of points are frequently
present but filtered in other block I/O traces [1]. We inten-
tionally include these points in our classifications to verify
that they trivially classify into their own working set. Our
k-NN and bag-of-edges methods can work around the noise
of the spike to produce realistic working set groups given
reasonable parameters.

6. CONCLUSIONS
We have presented two distance metrics and three parti-

tioning algorithms for separating a stream of I/O data into
working sets. We have found that the working sets discov-
ered by our method are stable under perturbation, implying
that they have a high level basis for existing. Our methods
are broadly applicable across workloads, and we have pre-
sented an analysis of how different workloads should respond
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Figure 7: Working sets with the bag-of-edges algorithm. Higher levels result in much smaller groupings.



Figure 8: The Bag-of-Edges technique with varying offset and time scaling. Each graph is labeled as number
of levels - offset scaling factor - time scaling factor.



to different partitioning methods. Unlike previous work in
the field, we perform analysis using only data than can be
collected without impacting the performance of the system.
Our methods are also designed to separate working sets that
are interleaved within the I/O stream. Finally, our methods
are designed for use on disks instead of cache, changing the
design goals from “likely to be accessed next” to “likely to
be accessed together.”
A consistent, easily calculable grouping that is not tied

to a specific workload opens up two main avenues of work
that is essential for the next stage of exascale system de-
velopment. First, we will be able to characterize workloads
based on how they are separated and how separable they
are. Knowing a workload is likely separable allows us to
move onto the next step, which is dynamically re-arranging
data across a large storage system according to the work-
ing set classification of the data. Being able to re-arrange
data to minimize spin-ups will be essential to keeping down
power cost and increasing the long term reliability of these
increasingly vital storage systems.

6.1 Future Work
Our current project is to use a protocol analyzer to collect

block I/O data from a mixed-use, multi-disk educational
storage system to provide a direct comparison and validity
numbers to extend this work. With this data stream, we
hope to implement working set detection in real-time, as
well as track potential power savings and reliability gains
from grouping the data together according to the assigned
working set.
Once we have more data, our next step is to discover what

about a workload makes it amenable to this sort of grouping.
We believe that workloads with distinct use cases, whether
they be from an application or a user, are the best bet for
future grouping efforts, but many HPC and long-term stor-
age workloads share some of the surface level properties that
make the application servers good candidates. The goal of
this line of questioning is to derive a set of characteristics
of a workload that would indicate how easy it is to group
along with what parameters to try first.
Another angle we are interested in is backtracking from

our working sets to discover which sources tend to access
the same offsets of data. Once we know this, we can im-
plement more informed cache prefetching and, in large sys-
tems, physically move the correlated offsets near to each
other on disk to avoid unnecessary disk activity. Previous
work has led us to believe that even if files are duplicated
across disks, the potential gain from catching subsequent ac-
cesses in large, mostly idle systems is high enough to make it
worthwhile [29]. We are also interested in refining the graph
covering algorithm to accept groups that are only partially
connected instead of requiring complete cliques by imple-
menting techniques from community detection [9].
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