
An Analytical Study of Opportunistic Lease Renewal

Randal C. Burns, Robert M. Rees
Storage Systems and Software
IBM Almaden Research Center

Darrell D. E. Long
Department of Computer Science

University of California, Santa Cruz

Proceedings of the Twenty-first International Conference on Distributed Computing Systems (ICDCS), Mesa, Arizona: IEEE, April

2001, pp. 146—153.

Abstract

We present opportunistic renewal, a lease management protocol designed to keep distributed file systems or
distributed shared memories consistent in the presence of a network partition or other computer failures. Our
treatment includes an analytical model of the protocol that compares performance with existing lease protocols
and quantifies improvements. In addition, this analytical model provides the structure to understand message
overhead and availability trade-offs when selecting lease parameters. We include results demonstrating that op-
portunistic renewal substantially reduces the network overhead associated with lease renewal. As a corollary,
opportunistic renewal can reduce the lease length at any given network overhead; e.g., by a factor of 50 at 1% net-
work overhead. Lower overhead makes leasing less intrusive and shorter lease periods allow a system to recover
from failure more quickly.

1 Introduction

Fast, efficient, and memory-consistent recovery from failure enables distributed applications to be reliably
deployed on a large scale in a fault-prone environment. Internet applications such as transaction processing and
data mining are increasingly data driven and require consistency guarantees which current Internet protocols fail
to provide. Also, proxy caching benefits from strongly consistent data [3], but is deployed on large scale unreliable
networks so that failures are a certainty. While data inconsistency errors are annoying to humans, they can cause
distributed applications to produce incorrect results. For large scale applications, efficient recovery from failure
and communication errors is essential. Fast recovery makes applications more responsive to users and reduces the
costs associated with the unavailability of data. Improving lease efficiency and responsiveness is a key technology
when deploying distributed applications on a large scale.

Since their inception in the V operating system [4], the semantics of leases have evolved to reduce network
overhead and simplify failure and recovery. Distributed systems frequently employ leases to keep memories or
file systems consistent in the presence of network or processor failures. In its simplest form, a lease is a fixed
length time-out shared between a lease holder (client) and lease manager (server). Having decided when a lease
starts, the client and server can use the fixed time-out period to agree upon the lease’s expiration. Client and
server use expiration as a synchronization point on which to coordinate activities, even if they are no longer able
to communicate due to a network failure.

We develop an analytical model that can be used to understand the relative performance of different lease
protocols and select appropriate lease intervals. In particular, we study a technique known as opportunistic re-
newal [2]. Our results show that opportunistic renewal causes lease overhead to become exponentially smaller,
Θ(2−τ), as the lease period τ increases, rather than inversely smaller, Θ(1/τ), as is seen with other techniques. Op-
portunistic renewal can be used to reduce lease periods from the tens of seconds used in the original work [4] and
in modern file systems [10] to less than a second without increasing network overhead.

Our analysis also shows that opportunistic renewal makes leases more highly available for networks that exhibit
transient failures resulting from factors like routing errors, packet loss, and congestion. This result implies that

1

leasing techniques apply not only to clusters of file systems, but to large scale networks, like the Internet, that
exhibit this behavior.

The main contribution of this work is an analytical model that quantifies the benefits of opportunistic renewal
and helps select suitable lease parameters. In developing the model, we observe that current lease protocols use a
period that can be significantly reduced. With reduced lease periods, systems recover from failures more quickly,
present data that is more highly available, and are more responsive to users and applications.

2 The Evolution of Leases

Leases, as introduced in the V operating system at Stanford, were originally used as a cache coherency con-
struct [4]. The lease keeps memories consistent across many computers in the presence of network or processor
failures. A lease in this system represents a contract entered by a server (the lease provider) and a client (the lease
holder) in which the client receives a temporary privilege to read and cache a data object. Each lease has a pe-
riod for which the server and the remainder of the distributed system agree to respect the holders ownership of
a data object. In V, the lease period was chosen to be 10 to 20 seconds. The lease cannot be interrupted and a
computer that wishes to write a data object must wait until outstanding leases expire before the write completes.
While V provides a single lease for readers in a write-through caching system, this lease model can be extended for
write-back caching by using two types of leases – exclusive for writers and shared for readers.

leases have the advantage that they provide uniform operation and synchronized access to data even when
computers fail or are isolated. Servers do not need to contact clients to revoke read privileges, because the client
agreed ahead of time to a lease period. Uniform operation indicates that there is no special recovery protocol to
handle the failure of a lease holder. leases expire whether or not their holders have failed. Even when clients fail or
the client/server communication is lost, caches are coherent.

The V lease model has performance, responsiveness, and scalability limitations. A computer must acquire a
lease for every data object it accesses and must explicitly renew these leases when they expire. The large number
of leases and their need for renewal can prohibitively burden the lease manager and the network. Also, since other
computers cannot preempt leases, they must wait up to a entire period for the lease to expire before gaining access
to shared data. The V lease model cannot scale to large distributed systems or provide timely access to highly
shared data.

In order to reduce the overhead of lease renewal, subsequent system designers have used a single lease for
each computer, rather than for each data object. The Frangipani file system [10] uses this technique to align the
granularity of leases with the granularity of failure; i.e., computers or networks are expected to fail, not individual
data objects. This dramatically reduces the total number of leases and therefore reduces overhead.

With a lease per computer, leases alone are not adequate for cache coherency and preemptive cache coherency
locks [6] must also be used. This approach employs locks for each data object and any lock is held in the context
of a lease. If a lease expires and is not renewed, all locks become invalid. Separating cache coherency (locks) from
failure and recovery (leases) allows the system to be more responsive and more efficient: locks can be preempted
and need not be renewed. However, uniform operation is lost, because locks do not time out and after a failure
they must be stolen [1] – locks outstanding on a failed client are labeled invalid and subsequently ignored by the
server.

Leases may also be used hierarchically with short leases on individual data objects and long leases on collec-
tions of objects. Yin et al. [12] describe a system called volume leases designed for consistency in large-scale and
weakly-connected systems. To access a data object, a computer must hold both a long lease on the object itself
and a short lease on the collection that contains the object. The long lease on a single data object reduces the over-
head of lease renewal. The short lease makes the system more responsive. The cost of renewing the short lease is
amortized over all objects in the collection.

We observe that a lease per computer with cache coherency data locks is a variant of hierarchical leasing. The
long lease on a data object corresponds to a cache coherency data lock, because data locks are essentially revocable
leases with infinite term. The lease per computer is roughly analogous to a lease on a collection of objects, because
it is a single lease protecting consistency on many data objects. However, the lease per computer approach has the
advantage that the collection of objects are exactly the data objects being used by the computer at a given moment,

2

rather than an immutable grouping of objects selected a priori. Using a lease per computer provides the same
consistency guarantees with lower renewal costs than hierarchical leasing.

3 Leases in Storage Tank

We present the opportunistic renewal (OR) lease protocol implemented in the Storage Tank distributed file
system [2] as the basis for our analysis. Like Frangipani [10], Storage Tank uses a single lease per computer to align
the granularity of leases with that of failure. In addition to leases, Storage Tank uses data locks for cache coherency.

Unlike Frangipani and other systems, the Storage Tank lease protocol introduces two lease management tech-
niques that improve performance: opportunistic renewal and stateless serving. Opportunistic renewal allows a
lease holder (client) to renew its lease implicitly on every message that it initiates, avoiding the network overhead
of explicit renewal messages. Stateless serving permits the lease manager (server) to retain no state regarding client
leases until a communication error occurs. The point of a stateless server is not to save memory at the server (as
discussed by Yin et al. [12]), but to eliminate the need for the server keep all client leases on timers. This tech-
nique reduces both programming complexity and the processor overhead of scheduling and enforcing client lease
time-outs.

3.1 The Opportunistic (OR) Renewal Protocol

Before developing the OR protocol, we state the network environment and assumptions required for the pro-
tocol to operate correctly. The OR protocol requires clocks at the clients and servers that are rate synchronized
with a known error bound δ, i.e. an interval of length t when measured on one computer’s clock has length that
falls within the interval (t/(1+δ), t (1+δ)) when measured on the clock of another machine. It does not require ab-
solute or relative time synchronization or Lamport clocks [7]. Our protocol operates in a connection-less network
environment, where messages are datagrams. However, many messages between a client and server are either ac-
knowledged (ACK) or negatively acknowledged (NACK), and include nonce identifiers for “at most once” delivery
semantics.

Lease
Period

message

ACK

t C1

t +C1

t C2

t S1
t S2

Client Server

Lease
Active

Figure 1: Client lease renewal.

A lease in this protocol defines a contract between a client and a server in which the server promises to respect
the clients cache coherency locks for a specified period. The server respects the contract even when clients are
unreachable. A client must have a valid lease on all servers with which it holds locks, and cached data become
invalid when a lease expires.

3

Servers use the lease period to time-out client locks. If a server attempts to send a message that requires an
ACK from a client, and the client does not respond, the server assumes the client to be failed. Having decided the
client is failed, the server starts a timer that expires at time τ(1+δ) later, where τ is the contracted lease period.
The server knows that τ(1+δ) represents a time of at least τ at the client. Once the server waits out this timer, it
may revoke the clients locks.

The key feature of the server’s protocol is stateless serving – it retains no state about client leases. During
normal operation, the server grants locks and ignores leases altogether. No lease-specific operations are performed
and no server storage used. Only when a delivery error occurs does the server get involved by starting a lease timer.
This passive design simplifies the implementation of the server and limits the performance impact of leases. A
server that records client leases must have a local timer for each lease granted and must unschedule this timer and
reschedule a new timer whenever a lease is renewed. This necessitates priority scheduling data structures and also
frequent interrupt service routines for timers. By making the server protocol stateless during normal operation,
we avoid implementation complexity and runtime overhead.

send

transient
partition

send

retry

retry

ACK

send

begin
timeout
interval

NACK

Client Server

Figure 2: Servers negatively acknowledge messages when timing out clients.

3.2 Renewal and Time-out

In the opportunistic renewal protocol, a client implicitly obtains or renews a lease with a server on every mes-
sage it initiates (Figure 1). For example, at tc1, the client sends a message to the server. The server receives this
message at ts1 and acknowledges receipt at ts2. Even without synchronized clocks, the client and server have an
absolute ordering on events tc1 ≤ tS2. Upon receiving the ACK at tc2, the client obtains a lease valid for the period
[tc1, tc1 +τ). This lease’s period starts from when the client initiates the message, not when it receives the ACK, be-
cause initiating the message is known to occur before the server’s reply. While this lease is valid from [tc1, tc1 +τ),
from the client’s perspective, it does not activate until tc2, when the client receives an ACK, indicating it is in contact

4

Client UDP Message

ACK

Client TCP

UDP Server

TCP ServerMessage

ACK

Figure 3: A comparison of application communication using TCP and UDP protocols.

with a server. The client operates under this lease for the period [tc2, tc1 +τ).
Transient failures and communication errors can result in a client, that believes it is operating on a valid lease,

communicating with a server that is in the process of running a timer to reclaim client’s locks. For correct op-
eration, this asymmetry must be detected and addressed in the lease protocol. For example (Figure 2), a client
may experience a transient network partition, miss a message, and recover communication with a server, without
knowing that it missed a message. The server knows this client to have missed a message and begins timing out
the lease. Having recovered communication, the client sends new requests to the server. The server can neither
ACK the message, which would renew the client lease, nor execute a transaction on the client’s behalf. Ignoring
the client request, while correct, leads to further unnecessary message traffic as the client continues its attempts to
renew its lease. Instead, the server sends a negative acknowledgment (NACK) in response to a valid request from a
client that is being timed out.

The client interprets the NACK to mean that it has missed a message. It knows its cache to be invalid. The client,
aware of its state, foregos sending messages to acquire a lease, and prepares for recovery from a communication
error.

Often, network partitions do not result in the server failing the client. A network partition always causes the
client’s lease to expire after at the end of the period. However, unless the server tries to send the client a message
and fails, the contents of the client cache remains valid. If no communication errors occur, the server is unaware
that the client’s lease has expired. This is a side-effect of stateless serving. When the network recovers, the client
sends its next message to the server and its lease is renewed.

S
k/1 S

k/2 S
k/3 k/ kS k/

Figure 4: The Erlang-k random variable.

4 An End-to-end Protocol

Our lease protocol requires end-to-end message delivery because the ACK and NACK message are overloaded
to signify communication between the server application and the client application. An ACK from the server val-
idates the contents of the clients cache and therefore implicitly renews the clients lease. A NACK instructs the
client that its state is inconsistent with that of the server. The server application, not the networking layer, must
generate the ACK or NACK for the overloaded semantics to be correct. Saltzer et al. [9] present a similar end-to-end
argument for ACKs.

The need for end-to-end guarantees encouraged us to implement the OR protocol on UDP rather than TCP. In
Figure 3, we observe that an ACK in TCP comes from the network protocol stack. Using TCP an ACK indicates only
that the network layer is operational and can be obtained even if the server application has failed. Similarly, the
NACK the OR protocol relies on to detect transient partitions cannot be implemented with TCP.

Distributed systems are often implemented with TCP so that they can take advantage of TCP’s flow control and
windowing, which significantly improve performance when transferring large bodies of data.

5

However, any file system protocol can be divided into data traffic, which obtains performance benefits from
TCP, and control traffic – synchronization and metadata – which consists of small messages that do not utilize TCP’s
features. This distinction has been made frequently in file systems in order to separate the metadata workload from
the data workload so that they do not contend on the same physical resource [8]. Data requests are also separated
so that they may be sent to high-performance storage hardware [11, 5]. Most distributed system protocols can be
differentiated into data intensive operations and control operations and can choose UDP for the latter. Storage
Tank’s protocol [2] has a natural division of workload, because data access and control messages are performed on
different networks.

5 Lease Protocol Model

We build an analytical model of the OR lease protocol based on Markovian and steady state assumptions. Our
model captures both opportunistic and explicit lease renewal, where explicit lease renewal indicates all protocols
that send a renewal message when a lease times out [10, 4, 12]. The model describes the lease protocol from the
perspective of the client (lease holder) and evaluates performance metrics for single clients only. While we will not
consider systems with many lease holders, previous research [4, 12] sums the contribution of each client computer
when evaluating many network and server performance metrics. The same technique can be used to extrapolate
our results to large systems.

5.1 Modeling a Time-out

The key feature of a lease to be modeled is its duration (period). At the core of a fixed length lease is a structure
in the model that describes a time-out.

To accurately model a time-out, we use the sum of a large number of independent and identically distributed
(i.i.d.) exponential random variables. The lease itself is the sum of k exponential random variables each with
parameter k/τ (Figure 4); the mean of each distribution is τ/k and the variance τ2/k2. This construction forms
a summation of distributions that takes on values close to τ (the lease period) with high probability. In fact, we
choose k large enough so that the expected time to complete the system, which we call Sk because it is the sum of
k i.i.d. variables, differs from the mean by less than a factor of δ (the clock skew) with confidence ϵ: i.e., Pr[|Sk−τ| ≥
δτ] ≤ ϵ. By choosing a large number of states, we are able to approach this mean with arbitrary precision.

We observe that this construction is identical to the Erlang-k random variable with parameter k/τ, mean τ,
and variance τ2/k. We can use Chebyschev bounds on the Erlang-k variable to evaluate the probability that the
variable is close to the mean. Chebyschev bounds state that Pr[|x −µ| ≥ a] ≤ σ2/a2 for random variable x with
mean µ, and variance σ2. Applying this to the OR protocol model, Pr[|Sk −τ| ≥ δτ] ≤ 1/(kδ2) ≤ ϵ. Based on this
bound, we need to choose k ≥ 1/(δ2ϵ) to model lease periods within δτ of τ with confidence ϵ.

S
k/1 S

k/3 k/ kS xSk/

F
k/1 F

k/3 k/ kF xFk/

μ

σ+ρ
ρ

ρ

λμλ μλμλ

Figure 5: Model of an opportunistically renewed lease.

Tighter bounds can be achieved by treating the system as a sum of exponential variables, rather than a single
Erlang-k random variable, and using the central limit theorem (CLT) to choose k. The CLT states

Pr

[
x ≤ Sk −kµ

σ
p

k
≤ y

]
≈Φ(y)−Φ(x), (1)

6

where Sk is again the sum of the k i.i.d. exponential random variables and Φ is the normal distribution func-
tion. For the OR protocol model, x = −y = (δτ)/(σ

p
k) = δ

p
k. For ϵ confidence, the CLT dictates that Φ(δ

p
k)−

Φ(−δpk) ≥ 1−ϵ.
Having selected values for δ and ϵ, we derive the number of states (k) that are required to satisfy the bounds.

For 99% confidence (ϵ = 0.01) that the lease is accurate to within 10% (δ = 0.1), the CLT requires us to model 676
states. Based on Chebyschev bounds, we would require 10,000 states for the same confidence. While 676 is a large
number of states, an analytical model of this size can easily be evaluated numerically.

5.2 Analyzing Leases

(k/τ+λ)Pr(S1) = µPr(F1)+ρ
k∑

i=2
Pr(Si)+ (σ+ρ)Pr(Sx)

(k/τ+µ)Pr(F1) = λPr(S1)

(σ+ρ+λ)Pr(Sx) = k/τPr(Sk)+µPr(Fx)

µPr(Fx) = k/τPr(Fk)+λPr(Sx)

(k/τ+λ+ρ)Pr(Si) = k/τPr(S)i−1 +µPr(Fi), for i = 2. . .k

(k/τ+µ)Pr(Fi) = k/τPr(Fi−1)+λPr(Si), for i = 2. . .k
k∑

i=1
(Pr(Si)+Pr(Fi))+Pr(Sx)+Pr(Fx) = 1

Figure 6: Balance equations.

Based on this technique for modeling a lease, we construct a Markov model of the lease management protocol
at a client using opportunistic renewal (Figure 5). The model represents a state machine describing events from
the perspective of a lease holder. The states S1 to Sk describe the lease period while the client holds a valid lease
and communication with the server is possible. Similarly, states F1 to Fk describe the lease period with the client
unable to communicate with the server due to a network partition or server failure. States Sx and Fx describe the
lease period having expired with or without the interconnect being available respectively.

Transitions among these states represent the passage of time; transitions from Si to Si+1 or from Fi to Fi+1

occur at rate k/τ. Both the S and F chains with states 1, . . . ,k describe the lease time-out using the Erlang-k random
variable construction.

Transitions also represent system events. The end-to-end interconnect with the server fails at rate λ and is
repaired at rate µ; transitions from network available states to network failed states (Si to Fi) occur at rate λ and
the opposite transition occurs at rate µ. Messages that explicitly renew leases complete at rate σ and transition the
model from no lease to a new lease (SX to S1). A client initiates messages that can opportunistically renew a lease
at rate ρ. Such transitions can take the model from any state where the network is available (Si) to a new lease (S1).
The variable ρ describes the message rate for all non-lease traffic between a client and server. In the Storage Tank
file system, this traffic consists of metadata operations and lock management.

Given the assumption that all random processes are Poisson and the system achieves a steady state, a solution
to the model is obtained by solving the balance equations (Figure 6).

This model of a lease can also be used to describe explicit lease renewal as used by other protocols [12, 4, 10].
By setting the variable that describes the rate of opportunistic renewal (ρ) to zero, all leases are renewed explicitly
in a transition from state Sx to S1 at rate σ.

5.3 Renewal Overhead

Solutions to the model show that opportunistic renewal substantially reduces network overhead when com-
pared with explicit renewal. More specifically, we find that the network message overhead decreases exponentially,

7

Θ(2−τ), as the lease period increases when using opportunistic renewal. This compares to an inverse variation,
Θ(1/τ), in network message overhead when using explicit renewal.

In Figure 7 we display overhead results comparing opportunistic and explicit lease renewal. The rate at which
leases are opportunistically renewed (ρ) is also rate for all messages that are not lease related (with inter-arrival
time 1/ρ). Overhead is unit-less and measured as the rate of messages for explicit renewal divided by the mean
message rate, expressed by the quantityσPr(Sx)/ρ. The lease period is also unit-less and describes the lease period
scaled as a multiple of the inter-arrival time: i.e., τρ.

When the lease period is short – shorter than mean message inter-arrival time – opportunistic renewal does
not significantly improve overhead as compared to explicit renewal. With such a short lease period, there are few
chances to opportunistically renew, because the lease times out much faster than messages are sent.

When leases are long, we see that renewal overhead decreases exponentially (Θ(2−τ)) with respect to the lease
period (linear decrease on a log scale). Regular protocol messages occur much more frequently than a lease times
out, and explicit renewals are needed infrequently.

Network overhead for explicit lease renewal declines inverse-linearly as the lease period increases. There is
a simple intuition behind this result. Leases are renewed periodically, as they expire, and the overhead is the
frequency of this renewal compared to the frequency of all other messages: 1/(τρ).

Figure 7 confirms our claims to the scaling of opportunistic renewal. This graph shows that the network over-
head at any given lease period is reduced; e.g., from 10−1 down to 5× 10−5 at a lease period of 10/ρ. We also
conclude that opportunistic renewal can greatly reduce the lease period for a fixed amount of network overhead.
At 100% overhead (100, one renewal message for every non-lease related message), opportunistic renewal reduces
the lease period only a small amount. However, at 10% network overhead, the lease period can be reduced to 2.4/ρ
from 10/ρ, reducing the lease period by over a factor of 4. Extending beyond the chart for explicit renewal, we
compare at 1%. For opportunistic renewal, a period of 4.7/ρ compared to 100/ρ, reducing the lease by a factor
of more than 10. For 0.1% overhead, opportunistic renewal requires a lease period of 7/ρ compared to 1000/ρ: a
factor larger than 140. Opportunistic renewal can reduce the overhead by an arbitrarily large factor by choosing
longer lease periods.

0 2 4 6 8 10
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Lease Period

O
v

er
h
ea

d

Opportunistic
Explicit

Figure 7: Renewal message overhead.

While lengthening the period reduces overhead, we note that the length of the lease remains short from a
system perspective. Recent benchmark results on local and distributed systems [10] indicate that the file system

8

on any single computer must support over 1000 metadata operations per second to be performance competitive.
If we look at workloads of this order distributed over a server cluster of 100 computers, a client communicates
with each server 10 times a second. In this environment, a lease period of one half second produces overhead of
less than 1%. Comparing this to the lease periods in the tens of seconds used by existing systems [10, 12, 4], we
conclude that opportunistic renewal allows a leasing system to respond to failures in a fraction of the time with no
additional overhead.

0 1 2 3 4 5
10

−4

10
−3

10
−2

10
−1

Repair rate

D
at

a
u

n
av

ai
la

b
le

 (
S

x
 +

 F
x

)
Opportunistic
Explicit

Figure 8: Client data availability.

5.4 Data Availability at the Lease Holder

Our analysis also shows that opportunistic renewal can lead to better data availability in the presence of short-
lived communication failures. These results indicate the suitability of opportunistic renewal in wide-area or weakly
connected environments, like the Internet, where communication errors are more frequent and transient. Losing
a lease during an intermittent communication error negatively affects the system, because data are unavailable at
the disconnected client.

Figure 8 compares the repair rate of the network to the fraction of time when data are unavailable. For network
failure and repair we are concerned with failures attributed to factors like congestion, packet loss, and routing
errors, rather than hardware failures that are longer lived. Repair rate is normalized to the frequency of lease
expiration; i.e.a value of two indicates that the network repairs at twice the rate at which leases expire, 2/τ. Data
unavailable indicates the amount of time (as a fraction of 1) for which a client has no lease and therefore cannot
access data. We observe that as the renewal rate increases, clients using opportunistic renewal lose their lease
much less frequently than explicitly renewing clients. Looking at the OR protocol model (Figure 5), this means
that opportunistic renewal makes lower valued S and F states more probable than high valued ones. With explicit
renewal all S states have equal probability, as do all F states.

Availability results indicate that for weakly connected distributed systems, opportunistic renewal performs well
by renewing the lease on every message when the network is available. Therefore, after a network failure, a client
has a larger fraction of the lease period before expiration. This effect is more pronounced for higher repair rates
where the network can repair before the lease expires. For weakly connected distributed systems, designers can
select the lease period to be several times longer than the expected network repair rate to increase availability.

9

Increased data availability does not affect recovery time at the server. While it may seem that having the lease
valid for longer after a network failure would lead to the server waiting longer before recovering state from an iso-
lated client, we recall (Section 3.1) that the stateless server must wait a whole lease period after a communication
error regardless of the renewal protocol.

6 Conclusions

Through the modeling of lease protocols, we are able to quantify trade-offs between lease period and network
overhead to aid in parameter selection, determine the benefits of opportunistic lease renewal, and draw conclu-
sions about the impact that leases can have on distributed systems. Opportunistic renewal exponentially reduces
the network overhead of a lease protocol. This also means that opportunistic renewal drastically reduces lease pe-
riods. We also found that opportunistic renewal increases data availability at clients when networks fail and repair
intermittently.

Our results indicate the suitability of leases with opportunistic renewal for providing consistency guarantees in
large-scale distributed systems. Lease periods are reduced making systems more responsive when failures occur.
Also, at any given lease period, network overhead is reduced and availability increased. Lease protocols are a
powerful technique for deploying data-consistent applications in the Internet and opportunistic renewal improves
their performance properties in this environment.

Acknowledgements

We would like to thank Wayne Hineman, David Pease, Michael Penner and all the members of the Storage Tank
team at the IBM Almaden research center for their contributions to this work. We would also like to our anonymous
reviewers for their insightful feedback and corrections.

References

[1] M. L. G. Baker. Fast Crash Recovery in Distributed File Systems. PhD thesis, University of California at Berkeley,
1994.

[2] R. Burns, R. Rees, and D. D. E. Long. Safe caching in a distributed file system for network attached storage. In
Proceedings of the 14th International Parallel & Distributed Processing Symposium (IPDPS 2000). IEEE, May
2000.

[3] P. Cao and C. Liu. Maintaining strong cache consistency in the world wide web. In Proceedings of Transactions
on Computers, volume 47, Apr. 1998.

[4] C. Gray and D. Cheriton. Leases: an efficient fault-tolerant mechanism for distributed file cache consistency.
In Proceedings of the 12th ACM Symposium on Operating Systems Principles (SOSP ’89), pp. 202–210. ACM
Press, 1989.

[5] J. H. Hartman and J. K. Ousterhout. The zebra striped network file system. In Proceedings of the 14th Sympo-
sium on Operating Systems Principles, pp. 29–43. ACM, Dec. 1993.

[6] M. L. Kazar, B. W. Leverett, O. T. Anderson, V. Apostolides, B. A. Bottos, S. Chutani, C. F. Everhart, W. A. Mason,
S.-T. Tu, and E. R. Zayas. DEcorum file system architectural overview. In Proceedings of the Summer 1990
USENIX Technical Conference, pp. 151–164, 1990.

[7] L. Lamport. Time, clocks and the ordering of events in a distributed systems. Communications of the ACM,
21(7), July 1978.

[8] K. Muller and J. Pasquale. A high performance multi-structured file system design. In Proceedings of the 13th
ACM Symposium on Operating Systems Principles (SOSP ’91), pp. 56–67, Oct. 1991.

10

[9] J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-end arguments in system design. Transaction on Computer
Systems, ACM, 2(4), Nov. 1984.

[10] C. A. Thekkath, T. Mann, and E. K. Lee. Frangipani: A Scalable Distributed File System. In Proceedings of the
16th ACM Symposium on Operating Systems Principles (SOSP ’97), pp. 224–237, 1997.

[11] R. W. Watson and R. A. Coyne. The parallel i/o architecture of the high-performance storage system (HPSS).
In Proceedings of the 14th IEEE Symposium on Mass Storage Systems, 1995.

[12] J. Yin, L. Alvisi, M. Dahlin, and C. Lin. Volume leases for consistency in large-scale systems. In Proceedings of
Transactions on Knowledge and Data Engineering, IEEE, volume 11(4), July 1999.

11

