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Universidad Católica del Uruguay

Montevideo, Uruguay
tschwarz@calprov.org

Abstract—
If the data density of magnetic disks is to continue its

current 30–50% annual growth, new recording techniques are
required. Among the actively considered options, shingled writing
is currently the most attractive one because it is the easiest to
implement at the device level. Shingled write recording trades
the inconvenience of the inability to update in-place for a much
higher data density by a using a different write technique that
overlaps the currently written track with the previous track.
Random reads are still possible on such devices, but writes must
be done largely sequentially.

In this paper, we discuss possible changes to disk-based data
structures that the adoption of shingled writing will require. We
first explore disk structures that are optimized for large sequen-
tial writes with little or no sequential writing, even of metadata
structures, while providing acceptable read performance. We also
examine the usefulness of non-volatile RAM and the benefits of
object-based interfaces in the context of shingled disks. Finally,
through the analysis of recent device traces, we demonstrate the
surprising stability of written device blocks, with general purpose
workloads showing that more than 93% of device blocks remain
unchanged over a day, and that for more specialized workloads
less than 0.5% of a shingled-write disk’s capacity would be
needed to hold randomly updated blocks.

I. INTRODUCTION

Disk drive capacity has grown by nearly six orders of mag-
nitude since their introduction over fifty years ago. This growth
has been fueled by advances in many areas, including record-
ing technology, manufacturing, and materials. However, cur-
rent disk drives store 400 GB/in2, and are rapidly approaching
the density limit imposed by the super-paramagnetic effect for
perpendicular recording, estimated to be about 1 Tb/in2 [29].
As a result, new approaches are needed to ensure that disk
density continues to improve. Once such approach is shingled
writing, which can achieve much higher data density with
minimal changes to disk hardware and recording technology,
albeit at the cost of eliminating the ability to perform random
writes. This paper discusses approaches to effectively utilizing
shingled disks, both as “drop-in” replacements for standard
disks and in storage systems optimized to leverage shingled
disks’ unique access characteristics.

The elegant solution offered by shingled disks [6], [11],
[30] is to use a write head with a stronger, but asymmetric,
magnetic field. This approach is made possible by the fact that
writes require a much stronger magnetic field than do reads.
Shingled writing leverages this property by overlapping the
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currently written track with the previous track, leaving only
a relatively small strip of the previous write track untouched.
While this remnant is a fraction of the feasible write size, it is
still sufficiently large to be read with current GMR read heads.
As a result, shingled writing can place tracks closer together,
and data density within a track can also be increased, giving a
conservative estimate of density increase of about 2.3× [30].
While a Shingled Write Disk (SWD) still allows for traditional
random access reads, writes must be done sequentially because
a single track write destroys the next k tracks, where k is
typically 4–8. This radically changes the way in which the
system must interact with the SWD. In addition to revised
management of the SWD, effective use of non-volatile RAM
(NVRAM) such as flash or newer storage class memories
can further overcome any potential architectural limitations
of shingled writing. With the recent availability of large-scale
solid state disks, magnetic disks may well become relegated
to primarily archival storage roles. SWDs would be partic-
ularly well-suited to the sequential-write, random-read access
patterns that are likely in such scenarios. Nonetheless, in order
to increase the chances of becoming economically viable and
gaining widespread adoption, SWDs must be able to meet the
traditional expectations of a random-access persistent storage
device.

In the remainder of the paper, we first present an overview
of the technology behind shingled writing, describing its
advantages and limitations. Next, we describe the various
options for data layout in shingled write disks. In particular,
we consider an alternative to using NVRAM for storing data
that needs to be updated in-place as well as the capacity
losses introduced by banding—skipping tracks to allow for
random writes. The subsequent sections consider some of the
reasons to prefer particular options. Our paper can only lay the
groundwork for some of the experimental work that needs to
be done. We therefore describe the results from our analysis of
traces drawn from personal laptops in general use and running
specific applications. Our analysis aims to better understand
whether shingled write drives are likely to encounter favorable
workloads. Of particular interest is our finding that changes
to device blocks are very heavily concentrated in hot zones,
and that most blocks are written only once over extended
observation periods.



II. BACKGROUND

While shingling is a new approach to improving data density
on disks, it builds on existing technology, and disks that use it
must, at least initially, fit into roles filled by traditional disks.
In this section, we describe approaches that disk designers are
using to improve density, and the roles that disks using such
technologies must fill.

The dramatic improvements in disk data density will even-
tually be limited by the superparamagnetic effect, which
creates a trade-off between the media signal-to-noise ratio,
the writeability of the media by a narrow track head, and the
thermal stability of the media; Sann et al. call this the media
trilemma [28]. Various approaches to this problem have been
proposed; of these, shingled writing offers perhaps the most
elegant and currently realizable solution, but there are other
technologies that may also increase disk density.

One possible approach to address the superparamagnetic
limit is to radically change the makeup of the magnetic layer,
as is done in Bit Patterned Media Recording (BPMR) [24].
BPMR stores individual bits in lithographically defined “mag-
netic islands.” This approach faces several design problems,
however. The most obvious is the challenge of manufacturing
the surfaces themselves to have such islands. An additional
non-trivial challenge, however, is the requirement that writes
must be synchronized with the locations of the islands.

A second approach to increasing density involves temporar-
ily changing the receptivity of a standard magnetic layer
by “softening” the magnetic material, making it easier to
magnetize. This can be done with microwaves (Microwave
Assisted Magnetic Recording—MAMR, [34]) or by heat-
ing the writing area with a laser (Heat Assisted Magnetic
Recording—HAMR [3], [16], [27], or Thermally Assisted
Magnetic Recording [18]). Making the magnetic media easier
to magnetize allows the use of a smaller magnetic field, and
can also allow smaller areas to be magnetized, since lasers
and microwaves can be focused on small areas to restrict
the “softening” to a smaller region than that covered by the
magnetic field.

Unfortunately, both of these approaches offer significant
challenges in construction and mechanical design, and differ
significantly from existing magnetic disk designs. Because of
the difficulty in manufacturing such devices, disk designers
have been pursuing other approaches to increase data density.

In contrast to these techniques which require radical changes
to the structure of the underlying media, shingled writing
builds directly upon existing magnetic recording technologies.
A fundamental problem in magnetic recording is the control
of the magnetic field whose flux emanates from the write head
and must return to it without erasing previously written data.
While perpendicular recording allows much more stable mag-
netization of the magnetic grains, it complicates engineering
the magnetic field for writing because the flux has to enter
through the recording media in order to do its desired work,
but also has to return back through it to the head. In order
to protect already stored data, the return flux needs to be

Fig. 1. Operation of perpendicular magnetic recording. In contrast to
longitudinal recording, the magnetic field has to enter the recording track
twice.

Fig. 2. Corner write head for shingled writes.

sufficiently diffused, limiting the power that the magnetic field
can have, as shown in Figure 1.

Shingled writing addresses this problem by allowing data
in subsequent, but not prior, tracks to be destroyed during
writes. Shingled writing uses a write head that generates an
asymmetric, wider, and much stronger field that fringes in
one lateral direction, but is shielded in the other direction.
Figure 2 shows a larger head writing to track n, as used
by Greaves et al. in their simulations [7]. Because of the
larger pole, the strength of the write field can be increased,
allowing a further reduction of the grain size because the
technique can use a more stable medium. The sharp corner-
edge field brings a narrower erase band towards the previous
track, enabling an increase in the track density. Shingled
writing overlaps tracks written sequentially, leaving effectively
narrower tracks where the once-wider leading track has been
partially overwritten. Reading from the narrower remaining
tracks is straightforward using currently-available read heads.
Taken together, the smaller grain size and increased track
density result in an areal density increase by a factor of at least
2.5 [30] and possibly higher (3–5) according to our industry
sources. Greaves et al. modeled shingled writing and found a
maximum density of 3 Tb/in2 [7], a nominal increase of 3×
over the superparamagnetic limit of 1 Tb/in2.



Without shingled writing, avoiding interference with, or era-
sure of, adjacent tracks limits the maximum storage density of
a device. Two-Dimensional Magnetic Recording (TDMR) [4],
[12], [13], [28] can be used in addition to shingled writing
to place tracks even closer together by changing inter-track
interference from an obstacle to an instrument. TDMR reads
from several adjacent tracks and uses inter-track interference
to decode the signal from the target track. It uses more sophis-
ticated signal processing [13], [33] and write encodings. In a
traditional disk architecture with a single read head, reading
a single sector with TDMR involves reading the sectors on
adjacent tracks, requiring additional disk rotations. To avoid
this problem, TDMR disks could use multiple read heads on
the same slider, thus restoring traditional read service times.
TDMR presupposes shingled writing, but shingled writing can
be used without TDMR. In our view, the viability of Shingled
Write Recording (SWR) depends mainly on integrating SWDs
into current storage and computer systems, whereas much
research and development is still needed to assess the viability
of TDMR.

Shingled writing can be used alone or in conjunction with
other new magnetic recording technologies. Shiroishi et al.
recently proposed a possible transition path to incorporate
these future technologies [29]. While perpendicular magnetic
recording (PMR) reaches densities of up to 1 Tb/in2, the next
generation of technologies might use BPMR in conjunction
with HAMR or MAMR and Shingled Write Recording, with
a transitional use of Discrete Track Recording (DTR) as a
predecessor to BPMR to reach 5 Tb/in2. With TDMR in the
mix, they see the possibility of densities of 10 Tb/in2. The
Information Storage Industry Consortium targets this density
for 2015, enabling 7 TB and more in a single 2.5” disk at a
cost of about $3/TB [14], [15].

While BPMR, HAMR, and MAMR offer daunting chal-
lenges at the level of device engineering, the bulk of the
challenges and opportunity for shingled writing lie at the
systems architecture level. The major, but significant, func-
tional difference of shingled writing from current disk drives
is that in-place overwrites of data in a track destroy the data
in subsequent tracks.

III. INTEGRATION OF SWDS INTO SYSTEMS

SWDs are an ideal replacement for tape for backup and
archival data, thanks to the largely-sequential nature of writes
to these devices. Moreover, the ability of SWDs to be read
randomly makes them more attractive than tapes for archival
and backup. However, to be most useful and to provide
a mass market, SWDs must remain capable of serving as
primary random-access storage devices. Kasiraj et al. propose
organizing the disk into bands, where each band stores a single
file such as a large multimedia file [11]. Bands are separated by
a gap of k tracks, so that a write to the last track in a band does
not destroy the data in the first track of the subsequent band.
While we agree that some type of banding is necessary to store
the bulk of the data in a SWD, there are many ways of using
banding to manage data in a SWD and other design issues to

consider. The first consideration regarding banding might be
whether to assign individual files or objects to dedicated bands.
This is neither necessary nor optimal, since any volume of
collocated data unlikely to experience updates can be grouped
into a single band. Second, random updates can be supported
at the block level through augmentation with NVRAM, or
through the dedication of single tracks or smaller bands to
random updates. NVRAM, even in small sizes, can be used to
store a system log or buffer information allowing us to write in
bulk. Similar functions can be taken over by areas on the SWD
consisting of bands containing a single cylinder, making that
region functionally identical to a traditional disk track with
respect to random block updates. Third, any file system for a
storage device that serves (most) write requests by appending
to already written data shows similarity to log-structured file
systems (LFS) [25], [26], so the opportunity to manage the
SWD at the file or object level should not be ignored.

We can organize the possibilities for the SWD architecture
along at least three axes:

1) We can use each single band to store a single LFS
segment or we can have data in a band organized as
a circular log.

2) We may potentially separate or combine metadata with
user data in the same band, or we could opt for an
intermediate strategy such as focusing on subparts of
the metadata. For instance, we can maintain access time
(atime) in a separate log, but store the rest of the
metadata with the user data to which it refers.

3) We can have a single user data log (possibly with a
separate single metadata log), made up of segments
stored in bands or we can have many different logs.
For example, we can introduce a hierarchy of x levels,
where cleaning moves live data from the log at level
n to the log at level n + 1. Logs at different levels
can thereby be afforded different cleaning strategies. A
different use of multiple logs is to separate data from
different sources in order to colocate related data, and
avoid artificial interleaving.

We also see two basic strategies for using SWD in cur-
rent computer systems. First, we can mask the operational
differences of a SWD. This can be achieved solely by
adapting the layout of the device, or through a combination
with NVRAM—flash, phase change memory (PCM), or other
storage class memories (SCM)—as proposed by Gibson and
Polte [6]. Second, we can use a stand-alone SWD, possibly
with relatively little added NVRAM, and with a specialized
file system or object store implementation. The first approach
results in a drop-in replacement for current disks and uses a
standard block interface. Opting for an object store interface
allows more flexibility in the data layout and block manage-
ment of an SWD because the increased semantic knowledge
would implicitly include an awareness of which blocks were
unused for data storage. However, a higher-level object-based
interface also results in reduced flexibility of SWD deployment
and usage since it would no longer be a simple disk drop-in
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(a) Bands filled with circular logs. Bands 2 and 6 are cleaned, moving their
free space buffers to the right and potentially increasing the size of the
buffers by not copying “dead” blocks from tail to head.

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

(b) Bands treated as segments. Bands 2 and 6 are cleaned into Band 5,
allowing them to be freed.

Fig. 3. Two basic layout options for shingled write disks.

replacement.

IV. DATA LAYOUT OF SHINGLED WRITE DISKS

A SWD has to store the bulk of its data in bands, a collection
of b contiguous tracks in which data can only be appended.
Nevertheless, the disk can reserve a substantial amount of
storage space for data that must be updated in-place; even
reserving several gigabytes of such space would consume less
than 1% of the total available disk capacity. In addition to
such an area, a SWD can optionally be supplemented with
some NVRAM. Currently, this would likely be flash, but other
storage class memories (SCMs) such as phase change memory
(PCM) might be viable in the future. Because of these factors,
the size and layout of bands on disk and the mapping of data
structures to bands and NVRAM are critical design decisions
for SWDs.

A. Design of Bands

Bands consist of contiguous tracks on the same surface. At
first glance, it seems attractive to incorporate parallel tracks on
all surfaces (i.e., cylinders) into bands. However, a switch to
another track in the same cylinder takes longer than a seek to
an adjacent track: thermal differences within the disk casing
may prevent different heads from hovering over the same track
in a cylinder. To switch surfaces, the servo mechanism must
first wait for several blocks of servo information to pass by
to ascertain its position before it can start moving the head to
its desired position exactly over the desired track. In contrast,
a seek to an adjacent track starts out from a known position.
In both cases, there is a settling time to ensure that the head
remains solidly over the track and is not oscillating over it.
Because of this difference in switching times, and contrary
to traditional wisdom regarding colocation within a cylinder,
bands are better constructed from contiguous tracks on the
same surface.

At the end of each band is a buffer of k or more tracks,
where k is the number of tracks that are overwritten by a
shingled write. Given these restrictions, Figure 3 shows the
two basic layouts that SWDs may use. One option is to keep

0 20 40 60 80 100
b0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

c

k�3 k�5 k�7

Fig. 4. Proportional capacity loss c when using bands of b tracks for gaps
consisting of k = 3, 5, 7 tracks.

a circular log within each band and reclaim freed space by
moving live data at the tail of the log to the head of the log
and then considering the cleansed part free. A second option
is to clean bands “atomically”; in this approach, we either
write complete bands or bands or append to them until they
are filled. In the first case, the circular log would need an
additional buffer between its head and tail of at least k tracks.
These options are discussed in greater detail in Section IV-C.

In a layout that uses bands without circular logs, the actual
capacity is b/(b+k) of the nominal capacity and the proportion
of the capacity loss is c = 1 − b/(b + k). We show this
proportional capacity loss c for various values of k in Figure 4.
For instance, if we assume k = 5 and want to limit the
capacity loss to 10%, then each band must contain at least
45 tracks (b > 45). Track capacity on current drives averages
less than 1 MB, but since perpendicular magnetic recording
still supports further improvements to density, we use a value
of 1.5 MB, though tracks in the interior of a disk surface
typically have less capacity than tracks on the outside. Given
our assumptions, a band would have on average 67.5 MB,
which is much more substantial than the original LFS research
assumed [25], but not out of place for a modern LFS. If we
try to make bands of a uniform size, 100 MB per band would
still seem reasonable. As object size increases over the years
and as even a small amount of NVRAM allows us the luxury
of writing only full bands, concerns about the large size of
bands will abate.

B. Combining Overwrites and Appends

Uses of a Shingled Write Disk (SWD) as a primary storage
device in a system can benefit greatly from a storage area that
allows in-place updates. This can be provided by augmentation
with NVRAM, but we first consider providing this through
a Random Access Zone (RAZ) in the disk itself. The RAZ
consists of single tracks, each of which is followed by k −
1 empty tracks so that the track can be overwritten without
affecting other data on the disk.

1) Hardware Support for In-Place Updates: While it may
be technically possible to use a different track pitch in various
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parts of a disk, SWDs use a much larger write head that
fringes laterally in one direction, thus forcing us to use a track
pitch much larger than that of a comparable “normal” disk.
The resulting track density is not much higher than leaving k
tracks unused following each used track in the RAZ. Moreover,
integrating dynamically changing track pitch into an SWD
complicates the task of mapping bad sectors and requires large
changes to the servo system microcode. Thus, we believe that
dynamic track pitch changes are not economically feasible.
While we could lay out static regions with different track
pitch to enable in-place updates, this decision would have to
be made at manufacturing time and cannot be tailored to the
needs of users. Instead, we favor the use of random access
zones with “blank” tracks following them.

2) System Software Support for In-Place Updates: We
define a random access zone by leaving k tracks unused
between each two tracks in the RAZ. The rest of the disk,
which we call the Log Access Zone (LAZ), is still organized
in bands. We can think of the RAZ as consisting of bands with
only a single track. Alternatively, we can think of RAZ bands
as being thicker, namely k +1 times thicker than LAZ tracks,
and that the last track in a LAZ has the same width as the
RAZ. Figure 6 shows a simple layout with two LAZ bands
followed by a RAZ of 8 tracks. In reality, the number of tracks
would be order of magnitudes higher. We can intersperse RAZ
with LAZ, allowing us to, for example, place metadata in
a RAZ close to the data in the nearby LAZ. Additionally,
using cylinders instead of tracks for forming RAZ might prove
advantageous.

We now calculate the impact of dividing a shingled write
device into a single RAZ and a single LAZ (though in fact both
may well be divided up and judiciously distributed over the
disk). Call α the capacity gain of a shingled write device with
LAZ only. For example, Tagawa and Williams [30] project a
capacity gain of α = 2.3, i.e., using only a LAZ the capacity
of a shingled write disk is 2.3 times higher than with “normal”
writes. We devote a certain part of the surface, denoted by α, to
RAZ. Since RAZ uses buffer space, the data carrying capacity
of the disk, called L, is now smaller. These parameters are
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Fig. 6. Schematics of Track Layout on a Shingled Write Device with a LAZ
and a RAZ. The LAZ consists of two stretches of 24 tracks separated by an
inter-stretch buffer and the RAZ is made up of eight tracks.

related by the formula

r · α

k
+ (1 − r) · α = L

that is equivalent to

r =
k(α − L)
(k − 1)α

.

Given a target gain L, we can calculate the proportion of
disk area r and the resulting capacity that can be devoted
to RAZ We depict the results in Figure 5, which relates
the percentage of data capacity devoted to RAZ based on
the capacity gain L. We set the maximum capacity gain
(a single LAZ) to 2.3, the value suggested by Tagawa and
Williams [30]. Since k depends on the head design, we give
several alternatives for its value. For example, choosing k = 5,
a capacity gain L of 2 allows us to devote 16% of the surface
area to RAZ, but the RAZ then only has 3.75% of the total
storage capacity of the device. Increasing the gain to 2.2 lowers
these numbers to 5.4% and 1.13% respectively. As L → α
these proportions approach zero, and the effects of higher
values of k become less pronounced, though overall capacity
drops sharply.

While the area we can devote to RAZ is proportionally
small, it is quite substantial in absolute capacity as 1% of 1 TB
is 10 GB. However, storing all metadata in RAZ is impossible
unless files are, by current standards, exceedingly large, or
unless individual blocks are large. Examples of such large files
might be high resolution multimedia files or the archive files
used by the Internet Archive [2]. A file system only storing full
backups of machines could also use this strategy, but we doubt
that such highly-specialized file systems will be the driving
force behind widespread adoption.

We can break up the set of tracks making up RAZ in
whatever form we want and place the tracks on the disk
without any loss of capacity. If we use RAZ to store metadata
or directories, we can place it close to the LAZ areas where
the files themselves are being stored, in a manner quite similar
to Berkeley FFS [19].
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C. Design Space for SWD Block Layout

We can now list the design issues for block layout on shin-
gled write devices. We have already described two methods for
allowing in-place updates to some data: NVRAM and RAZ.
We now discuss the tradeoffs involved in determining the best
band usage, the best number of logs, and the reclamation of
space.

1) Band Usage: The bulk of data in a SWD is stored
in bands. A simple, elegant solution only writes complete
bands that each contain a segment of a LFS. This presupposes
buffering in NVRAM, but has very effective writes.

A second possibility only appends to bands. Compared
to the previous solution, writes are less efficient, but both
possibilities utilize the band completely.

A third possibility stores a circular log in each band.
Presumably, the size of the band would be at least doubled
compared to a design that cleans complete bands atomically.
To prevent writes to the head from destroying data in the tail,
an additional k track gap (the intra-band gap) between the
head and the tail is (usually) necessary. Figure 7 gives the
layout. To recover freed space, a cleaning operation moves
live data from the tail to the head, recovering the freed space
by not copying it to the head. Strictly speaking, if the log
happens to start within k tracks of the beginning track, then
the intra-band gap is not necessary. In some sense, this design
goes back from Rosenblum’s version of LFS [25] to the first
proposal by Ousterhout and Douglis [23], which did not break
up the log into segments.

A final possibility would use flexible band sizes. In the
absence of special workloads, neighboring bands could be
joined to store large objects more efficiently by using the
normally unusable inter-band gap between bands. We can
manage the bands using the “buddy principle” but if objects

do not endure, would have to manage fragmentation. We do
not consider this layout suitable for a general purpose SWD,
but included it for completeness.

2) Number of Logs: While a mainly write-by-append de-
vice is likely to use a LFS, there is nothing that prevents it from
having more than a single log. One reason for the separation
is the difference in longevity between metadata and data. A
particularly egregious example is the Access time (A-time)
that changes whenever a file or directory is read. Some file
systems only approximate A-times for simpler maintenance.

A reason to separate data into different logs is to allocate
files for more efficient read access later. An example where
this capacity would be vital would be a user who downloads
several movies at the same time at much smaller individual
download speeds than replay requires. The SWD that inter-
sperses all movie objects because it writes them into the same
log should have no problem digesting the offered input, but
since the movies are interspersed, might not be able to retrieve
a single movie fast enough for replay. In this scenario, the read
of a single movie essentially reads all movies internally and
then selects one of them for transfer into the main memory of
the system.

A final reasons for multiple logs is the creation of a
hierarchy of logs for cleaning. In most workloads, data that
has not been deleted for some time is much more likely to
remain undeleted in the future. Our log hierarchy exploits this
well-known phenomenon of hot and cold data. If we clean a
log, we copy the live data not to the head of the same log,
but to the head of a higher level log. We expect that data in a
higher level log is stable and that higher level logs therefore
do not have to be cleaned at the same frequency. Only the
highest level log is cleaned in the usual manner. A hierarchy
of logs does not set an upper limit on the number of times
that a long-living stored object is copied, but it should help to
keep this number low, and result in increased write efficiency.

When using a hierarchy of logs, we can also make use of
disk geography. Inner tracks on the disk surface contain less
data, and objects stored there take slightly longer to access.
The innermost cylinders would be best used for storing the
coldest log in our hierarchy.

A draw-back of having different logs is the need to move
to different locations for writes. In contrast, a single log never
has to reposition the head for writes. As writes become the
dominant part of the load, the performance difference of one
against several / many logs may become more pronounced,
and should be considered.

3) Cleaning: The introduction of a hierarchy of logs is
already one decision to be taken for the implementation of the
cleaning operation. A second decision concerns the amount of
cleaning to be done. At one extreme, we can clean complete
bands only. The alternative is a pro-rated cleaning operation
that cleans partial bands. Ultimately, the amount and rate of
cleaning required will depend heavily on how rapidly data is
updated on the device, and how well we can identify data that
is more likely to be updated.



V. FURTHER DESIGN CONSIDERATIONS

To realize the benefits of using shingled writing involves
both the management of the device and the nature of the
workload such systems will experience. We discuss workload
properties in Section VI, but will now focus on possible system
design characteristics. Specifically, we discuss the possibility
and potential of combining NVRAM, the special aspects of
engineering a “drop-in” block-level storage system based on
a shingled write device, data structures, and the problems and
opportunities of an object-level interface.

A. The Best Use of NVRAM

A SWD can benefit from the appropriate use of NVRAM
technologies, whether it be used to replace or to supplement
the random-update functionality supported by the layout, e.g.,
in the form of the RAZ. NVRAM is currently almost exclu-
sively flash memory. Several efforts are under way to replace
flash memory and we can expect other SCM technologies such
as PCM to become more cost effective and more efficient.
Even NVRAM implemented in NAND flash has different per-
formance, reliability, number of sustainable write-erase cycles,
and price. Currently (December 2009), appropriate NVRAM
costs about 20 to 25 times more per GB than disks, but this
ratio continues to fall. We can assume that the introduction of
shingled writing alone will not significantly increase the price
of disks. While the density of data due to shingled writing at
least doubles, the density of RAZ is 1/(1 + k) of that of the
raw SWD. If we assume k = 3, we can conservatively expect
the density of a RAZ in a SWD to be half that of a comparable
disk. This should still give a clear price advantage of about
10 to a disk that employs a RAZ. Once newer storage class
memories make it to market, they will exceed the performance
and reliability of flash at a reduced price. The widely superior
performance of flash (or SCM) together with the lower costs
of RAZ will offer interesting, workload dependent trade-offs
between RAZ and NVRAM.

We now consider how much NVRAM might be useful.
First, we can use NVRAM to buffer incoming data in order
to always write full bands. Since bands are small (they should
not exceed 100 MB), this capacity requires little additional
NVRAM, but using NVRAM only for the purpose of buffering
writes requires attention to the limited number of write-erase
cycles of current flash memory.

In the Write Anywhere File System (WAFL) [8] NVRAM
is used to maintain a log of all file system activity. This use of
NVRAM allows us to do away with the need to add metadata
to each physical write. Incidentially, the eponymous placement
strategy of WAFL shows that colocating related data is not
essential for good read performance. A further advantage of
logging system activities is the capacity of fast recovery from
system crashes.

We can use NVRAM to store recently created objects. In
most storage workloads, the longevity of a block of data or of
whole objects is not a memoryless property. Rather, a block
of data that survives for a given period (such as an hour or
a day) is disproportionally more likely to survive the next

period. Using NVRAM to store a few hours or days worth of
incoming data likely reduces the amount of non-live data in
a SWD considerably and with it the necessity for cleaning.
If we assume that we write first to NVRAM, then decisions
on the placement of data in the SWD are not taken at ingress
time. This opens up possibilities of using a placement strategy
without sacrifying write efficiency.

Finally, we can use NVRAM to store all or some metadata.
Metadata tends to have a higher amount of activity in all
categories (reads, writes, updates) per GB stored making it
an ideal candidate for special treatment.

Calculating an exact amount of NVRAM useful for SWD
devices is impractical, but a “back of the envelope” calculation
yields a few 100 MB in order to write complete bands, maybe
1 – 2% of the total storage capacity in order to buffer blocks
and objects on ingress, a few GB to maintain a file system log,
which totals maybe 30 GB for a 2TB SWD. The exact values
would be workload dependent, but the lower the rate and
percentage of updated blocks, the more that can be achieved
with smaller amounts of NVRAM.

B. A SWD-based Block Level Storage System

For shingled write recording to find widespread adoption,
a SWD needs to be able to function within existing systems
without major changes to other system components. Economic
reasons make it unlikely that different magnetic recording
technologies will be used only for specialized components
suited for certain workloads. This means that SWD need to
function as a “drop-in” replacement for current hard drives,
even though that market is potentially shrinking or shifting due
to the advent of Solid State Disks. One useful change would
be to augment the basic device interface with a command that
tells the device that the system considers a given block to be
free (rather than just eventually overwriting the block) Such a
command is also very useful to designers of solid state drives
or flash devices in general. The knowledge can be used in
a SWD to clean more efficiently as the data need not be
preserved. The same command allows a flash based device
to more efficiently prepare an erase block for erasure, as only
live pages in an erase block would need to be copied.

A principle problem for a general block-based file system
using a SWD device is contiguity, as most file systems
spend effort on placing related information in contiguous
Logical Block Addresses (LBA). In the append-only write
mode of SWD, these efforts will fall short leading potential
degradation. Throughput to a selection of completely random
blocks is about three orders of (decadic) magnitude slower
than that to contiguous blocks in a track. While a heavily
edited object might not see such a heavy access degradation,
we can certainly imagine a workload such as very large
database tables with frequent edits of small records where
the performance loss could become visible. A similar case
might be the intermingling of objects created simultaneously
and over time such as the concurrent downloads of movies or
other large files. Predictive data structures are able to separate
these objects so that they can be placed contiguously at least



after a first round of cleaning. Using a large NVRAM could
contribute to a solution of this problem. While it acts as a
type of cache, hit rate on reads is the wrong metric, as large
objects can be accessed faster if they are stored on magnetic
disk rather than on flash. In fact, we prefer to cache objects
likely to be soon edited.

C. Data Structures for a Block Device

To our knowledge, no research exists on data structures
with properties suited to a banded SWD. For instance, the
work on cache-oblivious data structures (e.g., [1]) uses random
access devices for all members of the storage hierarchy.
Such research exists for optical WORM (e.g., [31]) and flash
memory (e.g., BFTL, [32], B+-tree(ST), [21], FD-trees [17],
μ-trees, [10], LSM trees, [22]), and some of its ideas might
prove useful for SWD.

A device driver for a block structured storage device made
up of NVRAM and SWD needs to be able to quickly translate
Virtual (Logical) Block Addresses (VBA) to Logical Block
Addresses on the SWD. We assume that the NVRAM comes
with its own driver that, in the case of flash provides, wear
leveling. We then need to implement a VBA to LBA translation
table. The size of the table depends on the block size S,
the capacity C, and the length of an entry, which needs to
accomodate the total number of blocks, i.e., is C/S. For a
block size of 4KB and a capacity of 2TB, the number of
entries is 229. If we change the block size to 1/2KB, then the
number of entries is 232.. This number just allows us to store
each entry in 4B, but probably any design needs to accomodate
additional device capabilities. Thus, if each entry is a generous
8B (to also accomodate flags), the size of the translation table
is 4GB for 4KB blocks and 32GB for 1/2KB blocks. The
latter should probably not be stored completely in NVRAM
for cost reasons.

The simplest way to implement such a translation table
is through a B+-tree type structure. However, unlike a B+-
tree, the structure need not be dynamic and can have a fixed
number of levels. As there is no direct overwriting of data
in the NVRAM nor the SWD, a change to a leaf involves
changing all nodes from the leaf to the root, i.e. we have
a “wandering” tree [9]. If we store the top level(s) always
in NVRAM, where appending to a single page is possible,
we can use Easton’s construction [5] of updatable nodes. A
node is stored in complete pages. If we delete an entry in a
node, we append a delete record at the end of the node, and
if we want to update an entry, we append the new entry to
the node. Thus, entries within a node are not ordered. To find
an entry, the complete node needs to be read and evaluated,
which makes this data structure only efficient for NVRAM.
(Reading a complete band of 35 tracks in SWD takes 35 or
more rotations, or about 140 msec with a rotation speed of
15000 rotations per minute.) Alternatives or supplements use a
transaction log as proposed by Nath, [21], or by Hunter, [9], or
add a tree in NVRAM that contains recently changed entries.
These auxiliary structures can be mirrored in RAM for fast
access.

In order to allow cleaning, we need to select auspicious
bands for cleaning. This also necessitates keeping track of
blocks stored in SWD and now overwitten. In particular, we
need to be able to easily tell which data in a SWD band
is live and which is not. A simple method is to associate
each of the 104 to 105 bands (of about 100 MB each) with
a band descriptor maintaining the status of all the blocks in
the band in a bitmap. This map takes about 1GB of space
(or 1/4096 of the storage capacity of the drive using 512B
blocks). Efficient implementation of the bitmap makes use of
the expected locality of changes to the bitmap by maintaining
a log or a write cache so that we need rarely change an
individual entry in flash or SWD.

D. An Object-level Interface

An object store built with an SWD simplifies several design
issues. In general, object stores can leverage the knowledge
they have about which blocks are related for better allocation
of storage locations. First, objects are deleted as a whole,
which simplifies cleaning as it prevents already-freed data to
be copied and as it gives better information on which bands
are good candidates for cleaning. Second, it is much easier
to use several logs to store separate objects that arrive at the
same time separately. This capacity is critical when read access
needs to be optimized. In the case of large objects which fill
up whole bands, whole bands are freed all at once. Third, a
storage object comes with a well defined, though flexible set
of metadata including security information, which enables the
designer of the interface between the file system and the SWD
to decide whether to store all or some metadata separately from
the storage object.

If the goal of 7 TB disks by 2015 is achieved, the usual file
system interface for the user might become difficult to use. If
SWDs serve several computing systems as secondary storage,
an object store with its clearer solution to security, sharing,
and authentication could prove to be the simpler design.

VI. EXPERIMENTAL RESULTS

The efficacy of a SWD as a replacement for a general
purpose disk, and the need for more or less NVRAM or RAZ
capacity, is heavily dependent on the workload encountered by
the disk. Specifically, the rate at which individual blocks are
updated is of particular interest. If relatively few blocks are
updated, this would imply a lesser need for RAZ and NVRAM
space to render a SWD usable in place of a conventional disk.

For the workloads we have evaluated, our results indicate
that blocks are indeed rarely updated. This in turn suggests
that a very limited use of RAZ or NVRAM would make SWD
a successful replacement for current disks. The modest 1 to
3% capacity overheads of a RAZ we discussed above may be
sufficient to mask the majority of block updates. While some
workloads would seem perfectly suited to a SWD, particularly
workloads with minimal updates to previously written data
such as archival workloads, we evaluated workloads typical of
general purpose personal usage of a disk, as well as specialized
workloads drawn from a system being used to edit video, and a



third system dedicated to managing a music library. We present
results from all but the last experiment, which was found to
have negligible block update events over a period of almost a
month. This was not surprising as the update of a block is the
re-writing of its contents, and we do not consider the initial
writing of data to a block as an update event. This meant
that the regular addition of media files to the library did not
incur any updates beyond the negligible updates to the library
metadata. Our general purpose and video editing workloads
showed noticeable block update behavior, but nonetheless this
remained restricted to a very small percentage of all blocks
and supports the general usefulness of a SWD device.

A. Workload Description

The main general-purpose trace sets evaluated were drawn
from laptop and personal computers running Mac OSX, and
were gathered from November to December, 2007. The results
presented here are from a Mac laptop running Mac OSX
10.4 with the filesystem formatted for HFS+ with journaling
enabled. The workload is typical for personal workstations or
laptops and consists mainly of web browsing, file editing, and
code compilation. It also features personal media management
including video, image, and audio libraries. While there were
momentary trace interruptions due to full system reboots,
including one due to a major software update, these were
infrequent and brief enough as to be negligible. Any changes
in device behavior due to the major software update would be
typical for such occurrences. The traces include block update
behavior generated by both user file manipulation and system
file updates. Our data only reflects device-level requests, but
not requests satisfied by a cache, and is therefore reflective
of what would be experienced by the individual disk device.
The requests are in the simple form of block reads and writes.
They also include requests resulting from paging activity. The
“video editing” workload was gathered in January of 2010, on
a system running Mac OSX 10.5.8, and also using a filesystem
formatted for HFS+ with journaling enabled. The workload
was gathered over an approximately three hour period during
which two videos were edited and transcoded, each composed
of multiple video files edited to form the final videos. The
workload also included the transcoding of an hour-long video
file. All block updates were recorded, and were not limited to
those generated by the movie editing suite.

B. Results

The number of times that a given block is updated grows
with the observation period. Interestingly enough, we found
that a decreasing percentage of written blocks were written
multiple times. In other words, we observe a very small
percentage of hot blocks being rewritten, whereas a growing
percentage of written blocks is written only once. For example,
just under 94% of all accessed disk blocks have undergone
four or fewer updates. Figure 8 gives our result. The x-axis
gives the maximum number of updates and the y-axis gives the
percentage of blocks updated. We give four curves, one for an
observation period of an hour, a day, two days, and finally four
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days. We see that more than 85% of all disk blocks written
were never updated within the hour and 93% of all disk blocks
written were never updated within a day. This trend continues
as the observation period lengthens. This suggests that the
reclamation rate of data stored in a LAZ is very low. It also
suggests that if data is stored in NVRAM or a RAZ until it
reaches a certain age (e.g., an hour or a day), then the vast
majority of multiple updates to already written disk blocks are
masked.

In Figure 9, we see the impact of varying the tracked
block size on the percentage of updated blocks for a one-
day trace. This was done by replaying the trace, and tracking
a different block size for each run. We formed larger blocks
by combining adjacent sectors and counted an update to any
constituent sector as an update to the larger block. With larger
blocks, it is increasingly likely that a larger percentage of
blocks will be updated, requiring relocation, reclamation or
invalidation. What makes larger block sizes desirable is the



ability to reduce overheads imposed by any data structures
used in a data layout scheme. While the negative impact of
larger block sizes is noticeable, it is important to note that
it quickly becomes negligible for any blocks updated more
than 2 to 4 times. While multiple updates, however infrequent,
may still drive the need to reclaim, relocate, or invalidate
blocks upon update, these numbers do support the argument
that blocks demonstrating infrequent updates can quickly be
identified as stable. Such a quick classification can better
inform the relocation of data from RAZ or NVRAM to stable,
shingled, tracks.

Figure 10 shows the impact of differentiating disk blocks
that hold filesystem metadata from those that hold user data.
This distinction showed the most marked difference in the
percentage of stable disk blocks. Specifically, blocks contain-
ing metadata are consistently more likely to endure multiple
updates than data blocks. The difference is significantly more
pronounced for shorter observation periods, which supports the
potential for a small amount of NVRAM, or RAZ, to absorb
the bulk of updates that occur over such shorter time periods,
particularly if the blocks selected for caching are metadata
blocks.

We can exploit this result in one of two basic ways:
implementing shingled layout optimizations at the filesystem
or object level; or attempting to automatically classify block
types based on their behavior. Object and file-level approaches
that can separate metadata blocks from data blocks [20] have
demonstrated the benefits of such semantic knowledge on
improving the utilization of hybrid storage systems. A similar
result can be achieved through the automated classification
of device blocks, and is a topic we plan to address in future
work. In either case, it would then become feasible to assign
metadata and data blocks to different regions of the disk,
to the appropriate log segment or circular buffer, or to the
appropriate block on disk or in NVRAM. Interestingly, while
the difference in short-term behavior is more ponounced, there
remains a pronounced difference over the long term. Metadata
blocks remain more likely to experience multiple and regular
updates, whereas data blocks tend to persist as originally
written.

In Figure 11 we see the dramatic effect of a specialized
application on the observed device workload. The figure shows
the percentage of blocks updated for both the general purpose
workload and the more specialized video editing workload.
The general-purpose workload was in no way modified to
accommodate our SWD model, was drawn from computers
acting as their users’ primary systems, and yet demonstrated
an encouragingly low rate of block updates. The percentage of
updated blocks drops as the observation period grows, but the
effect of focusing solely on blocks holding user data (“Data
Blocks” in the Figure) is even more pronounced. When we
consider the “Video” editing workload, we see a dramatically
reduced percentage of updated blocks. This demonstrates the
additional benefits to be gained by pairing a SWD with a
complementary application. While suitable for general purpose
use, it would appear that video editing, and media library
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Fig. 10. The impact of block-type separation on update rates, as observed
for different periods.

applications are practically ideal. In this instance we see less
than 0.4% of blocks experiencing content updates during the
entire editing session (approximately three hours of heavy
use). As we mentioned above, further experiments with an
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audio library produced results that simply offered no notable
block update behavior over the entire trace collection period.
This was due to the fact that problematic block updates
are only those that would result in a change of previously
written data, and in that environment, such events were almost
nonexistent.

Our workload analysis allows us to reach the following con-
clusions for the general purpose device workloads considered:

1) Keeping track of updates to block allows us to identify
hot blocks. The volume of hot blocks is small enough
to allow us to efficiently allocate them to a RAZ or
NVRAM of minimal capacity.

2) Tracking larger block sizes diminishes accuracy in the
determination of hot blocks, but the effect is negligible.
We can further reduce layout metadata by indexing
larger blocks within bands and zones.

3) A file system that allows the device to distinguish
metadata from user data can gain from the ready and
efficient identification of hot blocks. This suggests the
benefits of object-stores based on SWDs, the automated
classification of block types, or the sharing of block type
information with the block device driver.

VII. FUTURE WORK AND CONCLUSIONS

The aim of this article was the exploration of the design
space for systems software support of SWDs. While SWDs
still need to be designed and prototyped, enough is known
about the technology to develop designs and test against
workloads. As always, selecting good workloads is difficult,
as the workload of tomorrow’s devices is going to be dif-
ferent from today’s devices, but this is a common and not
insurmountable obstacle. Thus one of our future goals is the
simulation of many of the ideas proposed in this paper and
testing them against existing and newer workload traces. A

primary tasks in assessing the viability of shingled writing will
be the implementation of a block-level device driver using a
simulated SWD. Another avenue for future work is developing
and testing the automated classification of stable blocks, and
testing heuristics for deciding when best to move device blocks
from a RAZ to a LAZ. The objective of these efforts would
be to improve the prospects of SWDs being viable as drop-in
device replacements.
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