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Abstract—The processor front-end has become an increasingly important
bottleneck in recent years due to growing application code footprints, particularly in
data centers. Profile-guided optimizations performed by compilers represent a
promising approach, as they rearrange code to maximize instruction cache locality
and branch prediction efficiency along a relatively small number of hot code paths.
However, these optimizations require continuous profiling and rebuilding of
applications to ensure that the code layout matches the collected profiles.
In this paper, we propose OCOLOS, the first online code layout optimization system
for unmodified applications written in unmanaged languages. OCOLOS allows
profile-guided optimization to be performed on a running process, instead of being
performed offline and requiring the application to be re-launched. Our experiments
show that OCOLOS can accelerate MySQL by up to 41%.

1. Introduction
As the world demands ever more from software, code
sizes have increased to keep up. Google, for exam-
ple, reports annual growth of 20% in the instruction
footprint of important internal workloads [3]. This code
growth has created bottlenecks in the front-end of the
processor pipeline, where latency-sensitive structures
cannot be easily scaled up – both Intel and AMD today
have 32KiB L1 instruction (L1i) caches, the same as
they did a decade ago. Cramming ever more code into
a fixed-size L1i leads to a rising number of processor
front-end stalls.

To address these front-end stalls, large software
companies have turned to Profile-Guided Optimiza-
tions1 (PGO) from the compiler community that reor-
ganize code within a binary to optimize the utilization
of the limited L1i for the common-case control-flow
paths. Google’s AutoFDO [1] and Propeller [9], Meta’s
BOLT [6, 7], and gcc’s and clang’s built-in PGO passes
are popular examples of this approach. While these
systems have seen successful deployment at scale,
there remain three significant challenges.

First, because PGO is an offline optimization, there
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1Many optimizations can be driven by profiling information,
so the term “profile-guided optimization” is quite broad. In
this paper, we use it to refer exclusively to profile-driven code
layout optimizations.

is a fundamental lag between when profiling information
is collected and when it is used to optimize the
code layout. If program inputs shift during this time,
previous profiling information is rendered irrelevant or
even harmful when it contradicts newer common-case
behavior. Maintaining profiles for each input or program
phase is prohibitive in terms of storage costs, so profiles
are merged together to capture average-case behavior
at the cost of input-specific optimization opportunities.

Second, even if we have secured timely profiling
information, if the program code itself changes then it
is difficult to map the profiling information onto the new
code [1]. Profiling information is captured at the machine
code level, and even modest changes to the source
code can lead to significant differences in machine
code. In large software organizations, code changes
can arrive every few minutes for important applications,
creating a constant challenge when applying PGO
with profiling data collected from version k to the
compilation of the latest version k ′. Profiling data that
cannot be mapped to k ′ is discarded, leading to missed
optimization opportunities.

The third key challenge with offline PGO approaches
is that recording, storing, and accessing PGO profiles
adds an operational burden to code deployment.

In this paper, we propose OCOLOS, a novel system
for online profile-guided optimizations in unmanaged
languages. OCOLOS performs code layout optimizations
at run time, on a running process. By moving PGO from
compile time to run time, we avoid the challenges listed
previously. Profile information is always up-to-date with
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the current behavior of the program, profiling data al-
ways maps perfectly onto the code being optimized, and
there is no profile management burden since a profile
is produced and then immediately consumed. Some
managed language runtimes (e.g., Oracle’s HotSpot
JVM) support online code layout optimizations and
achieve similar benefits. We are not aware, however, of
any system before OCOLOS that brings the benefits of
online PGO to unmanaged code written in languages
like C/C++.

To realize the benefits of PGO in the online setting,
OCOLOS builds on the BOLT [6, 7] offline PGO system,
which takes a profile and a compiled binary as inputs
and produces a new, optimized binary as the output.
OCOLOS instead captures profiles during execution
of a deployed, running application, uses BOLT to
produce an optimized binary, extracts the code from
that BOLTed binary, and patches the code in the running
process. To avoid corrupting the process, code patching
requires careful handling of the myriad code pointers
in registers and throughout memory. OCOLOS takes
a pragmatic approach that requires no changes to
application code, which enables support for complex
software like relational databases.

OCOLOS is different from other Dynamic Binary
Instrumentation (DBI) frameworks like Intel Pin [5] in
that OCOLOS 1) focuses on code replacement, instead
of providing APIs for instrumentation, and 2) has a
“1-time" cost model where major work is done only
during code replacement and the program runs with
native performance once the replacement is complete.
Existing DBI frameworks optimize for common code
paths with code caches, but the resulting benefits
are overshadowed by non-trivial ongoing overheads
to intercept control-flow transfers and analyze code on
cache fills. Instead, OCOLOS exacts a 1-time cost for
code replacement which is readily amortized, along with
a small amount of run-time instrumentation on function
pointer creation (see Section 4.3).

2. Background
We start with some background on state-of-the-art PGO
systems like BOLT [6, 7] and Propeller [9].

2.1. Hardware Performance Profiling
Profile collection is the first step of all PGO work-
flows. Large-scale deployments generally leverage
hardware profiling support like Intel’s Last Branch
Record (LBR) [4] facility, which dates back to the
Pentium 4 and is widely available. When LBR tracing is
enabled, the processor records the Program Counter

(PC) and target of taken branches in a ring buffer. The
recording overhead via LBR is negligible and software
can sample the buffer to learn the branching behavior
of an application. By aggregating these samples, the
approximate frequency of branch taken/not-taken paths
through the code can be reconstructed. With these
branch frequencies in hand, we can make intelligent
decisions about optimizing the code layout.

2.2. Basic Block Reordering
Whenever programs contain if statements, the compiler
must decide how to place the resulting basic blocks into
a linear order in memory [8]. The ideal layout places the
common-case blocks consecutively, maximizing L1i and
instruction Translation Lookaside Buffer (iTLB) locality
while reducing pressure on branch prediction structures.

Consider the example program in Figure 1. Assum-
ing both conditions are typically true, shaded basic
blacks constitute the common-case execution. A naive
layout which places the blocks from each if statement
together results in two taken branches (shown by
arrows). The optimal layout, however, avoids any taken
branches, and results in better performance.

if (cond1) { // A
  // B
} else {
  // C
}
if (cond2) { // D
  // E
} else {
  // F
}
// G

naive 
layout

A
B
C
D
E
F
G

A
B

C

D
E

F

G

optimal 
layout

Figure 1: Example program which benefits from PGO

2.3. BOLT: Binary Optimization & Layout Tool
BOLT [6, 7] is a post-link optimization tool built in
the LLVM framework, which operates on compiled
binaries. Given LBR profiling information and a binary,
BOLT decompiles the binary, performs a series of
optimizations, and then performs code generation to
emit a new, BOLTed binary. Of BOLT’s optimizations,
basic block reordering provides by far the biggest
speedup [6]. One helpful feature of BOLTed binaries is
that if a function f grows in size after optimization (e.g.,
reordering basic blocks may cause branch offsets to
grow and require larger instructions), f will be placed in
a new text section of the binary. Other functions whose
sizes do not grow are optimized in-place.
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3. Challenges
A well-known and intuitive challenge with offline profile-
based optimizations like conventional PGO is ensuring
that the gathered profile data is of high quality. In
experiments with MySQL we found that, with the
Sysbench read_only input, feeding the profiling data
from that same read_only input to BOLT (which is like
testing on the training data) results, unsurprisingly, in
the biggest speedup compared with using any other
profiling data. However, the worst-case input resulted in
a 21% slowdown compared to the best profile, showing
that using poor profiling data can exact a high price.

OCOLOS requires modification of code pointers at
run time to perform its optimizations. First, we distin-
guish between code pointers that refer to the starting
address of a function versus those that reference a
specific instruction within a function (e.g., the target
of a conditional branch). We discuss function starting
addresses first. Functions can call each other via direct
calls, encoding the callee function’s starting address as
a PC-relative offset. There may also be indirect calls via
function pointers stored in a v-table2, or programmer-
created function pointers stored on the stack, heap, in
global variables or in processor registers.

Code pointers that do not refer to the start of a
function are also commonplace. Jump and conditional
branch instructions within a function reference code
locations via PC-relative offsets. Sometimes indirect
jumps rely on compile-time constants that are used
to compute a code pointer at run time, e.g., in the
implementation of some switch statements. Return
addresses on the stack are code pointers to functions
that are on the call stack. Each thread’s PC is a pointer
to an instruction in the currently-running function. A
thread may be blocked doing a system call, in which
case its PC is effectively stored in the saved context held
by the operating system. libc’s setjmp/longjmp API can
be used to create programmer-managed code pointers
to essentially arbitrary code locations.

Thus, the address space of a typical process
contains a large number of code pointers. Tracking
them so that they can be updated if a piece of code
moves is essentially impossible for any serious program.
Thus, OCOLOS retains the original code within a process
and adds optimized code at a new location, patching up
as many code pointers as possible to steer execution
towards the optimized code in the common case.

2A virtual function/method table (v-table) is used to imple-
ment dynamic dispatch or virtual functions in object-oriented
languages. The table itself stores function pointers to the
methods of a class.
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Figure 2: Main steps OCOLOS takes to optimize a target
process
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4. OCOLOS
In Figure 2, we show a high-level overview of the steps
OCOLOS performs to optimize the code of a target
process at run time. First, we gather profiling information
from the target process via Linux’s perf utility to extract
LBR samples ➊, then invoke BOLT to build the BOLTed
binary ➋, pause the target process via Linux’s ptrace
API ➌, inject code ➍, update pointers to refer to the
injected code ➎, and finally resume the process ➏.
Note that Steps ➊ and ➋, which consume the most
time, are done concurrently in the background while
the target process continues to run. Though operations
like running BOLT are CPU-intensive, they compete for
cycles with the target process for only a limited time.
Steps ➌-➎ are done synchronously while the target
process is paused. Steps ➊ and ➋ are largely taken
from prior work, so we focus on ➌-➎ below which are
the core of OCOLOS.

To better describe key operations within OCOLOS,
we first describe the important regions of the address
space of the target process, shown in the left part of
Figure 3a. The code from the original binary we refer to
as C0, which here consists of 3 functions a0, b0 and c0.
A v-table contains a pointer to b0. Finally, each thread’s
stack is also important as it contains return addresses
of currently-executing functions. In Figure 3a, c0 is on
the call stack.

OCOLOS takes as input an optimized binary, with
modified code for functions in C0 or code for entirely new
functions. While OCOLOS’s code replacement ultimately
requires a short stop-the-world period (Section 4.2)
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to modify code and update code pointers, OCOLOS

performs some bookkeeping in advance. In particular,
OCOLOS parses the original binary offline to identify the
locations of all direct call instructions. OCOLOS patches
these calls at run time, but identifying the call sites a
priori abbreviates the stop-the-world period.

4.1. Adding Code
As we described in Section 3, finding and updating all
code pointers is fraught with corner cases. This leads
to the first principle guiding OCOLOS’s design:

Principle #1: preserve addresses of C0 instructions

Instead of updating the code of a function in-place,
OCOLOS injects a new version of the code C1 into the
address space while leaving the original code intact
(see Figure 3a). OCOLOS then changes a subset of
code pointers within C0 to redirect execution to the C1

code. Remaining code pointers are not perturbed and
continue to point to C0 code.

4.2. Updating Code Pointers
When patching code pointers to make the C1 code
reachable, OCOLOS follows our second design principle:

Principle #2: run C1 code in the common case

OCOLOS executes code from C0 instead of C1 oc-
casionally to ensure correctness. However, the more
frequently OCOLOS executes code from C0, the more it
reduces the potential performance gains C1 can provide.
Therefore, we seek to make C1 the common case.

Since our goal for the current version of OCOLOS

is minimizing (but not eliminating) time spent in C0,
OCOLOS updates as many code pointers to refer to C1

as it is worthwhile to update. Note first of all that hot
code gets optimized by BOLT and resides in C1. Direct
calls in C1 will already refer to C1 (e.g., c1 calls b1) and
do not require updating.

Figure 3a illustrates changes OCOLOS makes. We
update function pointers in v-tables and direct calls in C0

for functions on the call stack (like c0). Recall that these
C0 changes preserve instruction addresses, honoring
our first design principle. We found that, in practice,
updating direct calls in all functions (i.e., including those,
like a0, not on the stack) does not improve performance
– because functions like a0 are cold – though it does
slow code replacement.

We could additionally seek out function pointers in
registers and memory, though doing so would require
expensive always-on run-time instrumentation to track
their propagation throughout the program’s execution.

This tracking would violate OCOLOS’s “fixed-costs only”
cost model:

Principle #3: code replacement can incur fixed costs,
but must avoid all possible recurring costs

Our experiments show that leaving these remaining
function pointers (which our workloads do contain)
pointing to C0 code is fine, since C0 code does not
execute very long before it encounters a direct call or a
virtual function call which steers execution back to C1.

4.3. Continuous Optimization
A natural use-case for OCOLOS is to perform continuous
optimization, whereby OCOLOS can replace C1 with C2,
and Ci with Ci+1 more generally. These subsequent
code versions Ci can be generated by periodic re-
profiling of the target process, to account for program
phases, daily patterns in workload behavior like working
versus at-home hours, and so on. OCOLOS can per-
form continuous optimization largely through the same
code replacement algorithm described above, though
functions on the stack and function pointers require
delicate handling as explained below.

A key challenge with continuous optimization is the
need to replace code, instead of just adding new code
elsewhere in the address space. If we continuously add
code versions without removing old versions, the code
linearly grows over time, wasting DRAM and hurting
front-end performance. To address this challenge, we
introduce a garbage collection mechanism for removing
dead code. We define dead code as code that can no
longer be reached via any code pointers and hence is
safe to be removed.

Instead of waiting for code version Ci to naturally
become unreachable, as in conventional garbage col-
lection, we can proactively update code pointers to
enforce the unreachability of Ci . OCOLOS patches v-
tables, direct calls from C0, return addresses on the
stack, and threads’ PCs to refer to the incoming Ci+1

code instead, as described in Section 4.2 and illustrated
in Figure 3b.

4.3.1. Return addresses Code pointers in return ad-
dresses and in threads’ PCs may reference Ci , so
OCOLOS must update these references to point to Ci+1.
To update these references, OCOLOS first crawls the
stack of each thread via libunwind to find all return
addresses. OCOLOS examines RIP for each thread via
ptrace. Collectively, this examination provides OCOLOS

with the set of stack-live functions that are currently
being executed. If any stack-live function is in Ci (such
as bi in Figure 3b), OCOLOS must copy its code to Ci+1.
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While there may be an optimized version bi+1 in Ci+1,
it is challenging to update the return address to refer
to bi+1 because, in general, the optimizations applied
to produce bi+1 can have a significant impact on the
number and order of instructions within a function.

Thus, OCOLOS makes a copy of bi in Ci+1, which
we call bi ,i+1 to distinguish it from the more-optimized
version bi+1. bi ,i+1 may need to have a different starting
address than bi , so OCOLOS updates PC-relative
addressing within bi ,i+1 to accommodate its new location.
OCOLOS must also update the return address to refer
to the appropriate instruction within bi ,i+1, but OCOLOS

can treat the original return address into bi as an offset
from bi ’s starting address, and then use this offset into
bi ,i+1 to compute the new return address.

While copying bi to bi ,i+1 is a key part of enabling
continuous optimization, it does not improve perfor-
mance of the currently-running call to bi since the code
is the same. However, subsequent calls are likely to
reach bi+1 instead via other code pointers, like the v-
table in Figure 3b.

4.3.2. Function pointers Apart from return addresses,
function pointers may also point to Ci . Instead of trying
to track down and update these pointers while moving
from Ci to Ci+1, OCOLOS enforces a simpler invariant
that a program cannot create function pointers to Ci

code in the first place – rather, function pointers must
always refer to C0. This allows function pointers to
propagate freely throughout the program without the
risk that they will be broken during code replacement.

OCOLOS enforces this invariant via a simple LLVM
compiler pass that instruments function pointer creation
sites to map pointers to Ci back to the corresponding
C0 function instead. This instrumentation has low cost:
MySQL running the read_only input creates just 45
function pointers per millisecond on average.

4.3.3. Current status Having avoided function pointers
to Ci , OCOLOS is able to update all other references to
Ci code to refer to the incoming Ci+1 code instead. Thus,
OCOLOS can safely overwrite Ci code. While BOLT
does not directly support re-optimization of a BOLTed
binary, which initially prevented continuous optimization
from being realized, we have recently learned about
an alternative workflow with BOLT that does allow for
re-optimization.

We are in the process of updating OCOLOS to
leverage this. BOLT’s strategy for offline re-optimization
is to translate profiling information from a BOLTed
binary to appear as if it were from the original non-
BOLTed binary, and then re-apply BOLT to the original
binary with the translated profile. To facilitate this, BOLT

creates a detailed basic-block-level translation table.
One technical hurdle we have already overcome

in continuous optimization is translating profiling infor-
mation gathered from an OCOLOS process like that in
Figure 3a, which is a mix of C0 and C1 code, to appear
as if it contains only C0 which is the format that BOLT
needs. We have extended BOLT to handle cases such
as when b1 is moved by BOLT but OCOLOS retains b0

as well, and thus both appear in the profile.

5. Evaluation
We run our experiments on a 2-socket Intel Broadwell
Xeon E5-2620v4 server with 8 cores and 16 threads
per socket (16 cores and 32 threads total) running at
2.1GHz with 128 GiB of RAM. Our benchmarks are
MySQL 8.0.28, MongoDB 6.0.0, Memcached 1.6.12
and Verilator 3.904.

5.1. Performance
Figure 4 shows the throughput improvement OCOLOS

provides across our set of benchmarks. We compare
OCOLOS to four baselines. Original is the performance
of the original binary, compiled with only static optimiza-
tions (nothing profile-guided). BOLT oracle input is the
performance offline BOLT provides when profiling and
running the same input. Finally, BOLT average-case
input is the performance offline BOLT achieves when
aggregating profiles from all inputs and then running
on the input shown on the y-axis. We show throughput
normalized to original.

Figure 4 shows that OCOLOS uniformly improves
performance over the original binary, by up to 1.41×
on MySQL read_only, 1.29× on MongoDB read_update,
1.05× on Memcached and 2.20× on Verilator. The
results for BOLT oracle input represent an upper
bound for OCOLOS’s performance, since BOLT has
access to the oracle profiling data and ensures that
all code pointers refer to optimized code, not just a
judicious subset of them as with OCOLOS (Section 4.2).
However, on average OCOLOS is close to the BOLT
oracle’s performance with a slowdown of just 4.6 points.
Compared to offline BOLT with an average-case profile,
OCOLOS is 8.9 points faster on average, as different
inputs tend to exhibit contradictory control-flow biases
that cancel each other out.

5.2. MySQL Case Study
To better understand the performance impact of OCO-
LOS’s code replacement mechanism, we performed an
experiment with MySQL with Sysbench’s oltp_read_only
input reporting the client’s transaction throughput every
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Figure 5: Throughput of MySQL read_only before,
during, and after code replacement.

second, shown in Figure 5. Region 1 is a warm-up
period, after which perf profiling begins collecting LBR
samples for 1 second (region 2). In region 3, perf2bolt
processes the LBR samples and then BOLT generates
the optimized binary. This is a CPU-intensive phase,
causing a reduction in throughput after the 30-second
mark. In region 4, OCOLOS performs code replacement
which entails a stop-the-world phase of 1.9 seconds.
After that, in region 5, MySQL’s parallel execution
resumes with the optimized code in place, boosting
performance by 1.41× compared to region 1.

We believe there is scope to significantly reduce re-
gion 4 latency by replacing some inefficient scripts with
compiled code, and parallelizing the code replacement
routines, which are all currently serial.

6. Impact
Despite PGO being a long-standing component of
optimizing compilers like gcc and clang, barriers to
adopting PGO in practice remain high. Deployment
at hyperscale in systems like Meta’s BOLT [7] and
Google’s AutoFDO [1] and Propeller [9] has reignited
interest in PGO research, but not fundamentally im-
proved usability. Offline profiling is still required, and
the binary must be rebuilt or rewritten based on the
profile. Matching a profile to a binary is a fragile process,
and even small code changes can cause a profile to
map poorly. PGO thus remains a tool used only by
those who care deeply about performance and are
willing to deal with the complexity of a PGO-enabled
build and production environment.
Democratizing PGO. OCOLOS’s primary long-term
impact will be to democratize the use of PGO and
provide its performance benefits to a wide range of
users automatically and by default. When PGO can be
deployed at runtime via OCOLOS without any need for
developers to adjust their code, their build system, or
their production environment, taking advantage of PGO
can become the default option, instead of an expensive
detour to higher performance. Below, we explain in
more detail how OCOLOS can bring this about.
Simpler deployment. By profiling and optimizing the
currently-running process, OCOLOS ensures that profile
information can be produced and consumed on the
local machine. No persistent storage or management
is required. This keeps operational complexity low,
avoiding dependencies on storage services which must
themselves be provisioned for PGO to function. Adopt-
ing a technology like OCOLOS can thus actually reduce
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overall system complexity compared to a conventional
offline PGO system like BOLT or Propeller.

Another important consequence of OCOLOS’s sim-
ple deployment is that many more software projects
can adopt PGO successfully. Smaller teams, or projects
that are important but not under active development,
struggle to justify the human cost of using offline PGO,
since there are ongoing costs to recording, storing and
retiring profiles and deploying the optimized binaries
that are produced. OCOLOS provides a 1-time cost
for adoption: installing the requisite packages and then
launching the workload under OCOLOS. Everything after
that is handled automatically. While offline PGO, with
its marginally superior performance when the input is
known in advance, may remain in use for very popular
workloads that can justify the complexity, OCOLOS can
target a long tail of workloads and provide significant
aggregate performance gains across a wide user base.
Continuous optimization. By enabling online PGO,
OCOLOS paves a path for continuous optimization. Prior
work [2] has shown that applying PGO on top of a
binary already optimized by PGO can provide significant
additional performance benefits. However, due to the
offline nature of existing PGO, such benefits are still
outside the scope of modern data center applications.
OCOLOS is a natural framework within which we can
unlock the compounding benefits of repeated PGO.
Reducing the data center tax. Due to the extremely
diverse nature of data center applications, there is
no small set of “hotspots” to optimize with traditional
hardware acceleration mechanisms [3]. Instead, these
applications share common building blocks (the “data
center tax”) in the form of popular shared libraries. Un-
fortunately, existing PGO cannot optimize these libraries
due to their variance across different applications [1].
As OCOLOS moves PGO from offline to online, OCOLOS

brings these “data center tax” components within the
reach of PGO, allowing the tax to be reduced in an
application-specific way.
Beyond PGO. OCOLOS is a generic framework for
updating the code of a running process at a 1-time cost.
OCOLOS’s ability to steer most (but not necessarily all)
of execution towards the updated code is well-suited
to specialization for vector extensions or accelerators
that happen to be available at runtime. Logging or other
program instrumentation could be selectively added to a
process to facilitate debugging in production; afterwards
the instrumentation can be completely removed to
restore native performance. Our code is open-source 3

to facilitate exploring these and other use-cases.

3https://github.com/upenn-acg/ocolos-public

7. Conclusion
We have described the design and implementation of
OCOLOS, the first online PGO system for unmanaged
code. OCOLOS provides the performance benefits of
a classic offline PGO compilation flow but applied to
a running process. By operating at run-time, OCOLOS

always profiles the most up-to-date behavior of the
program, and avoids problems with mapping the profile
to a target binary that can frustrate offline PGO.
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