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Abstract

Recent increases in CPU performance have outpaced in-
creases in hard drive performance. As a result, disk op-
erations have become more expensive in terms of CPU cy-
cles spent waiting for disk operations to complete. File pre-
diction can mitigate this problem by prefetching files into
cache before they are accessed. However, incorrect pre-
diction is to a certain degree both unavoidable and costly.
We present the Program-based and User-based Last n Suc-
cessors (PULNS) file prediction model that identifies rela-
tionships between files through the names of the programs
and the users accessing them. Our simulation results show
that, in the worst case, PULNS makes at least 20% fewer in-
correct predictions and roughly the same number of correct
predictions as the last-successor model.

1 Introduction

As disks operate significantly more slowly than CPUs,
prefetching files to cache memory before they are used re-
mains a promising way to mitigate the problem of speed
difference between them. While correct file prediction is
useful, incorrect prediction is to a certain degree unavoid-
able. Incorrect prediction not only wastes cache space and
disk bandwidth, it also prolongs the time required to bring
needed data into the cache if a cache miss occurs while the
incorrectly predicted data is being transferred from the disk.
Consequently incorrect predictions can lower the overall
performance of the system regardless of the accuracy of
correct prediction. In addition to saving disk traffic [16],
caching is also a technique commonly used to improve the
performance of distributed file systems [20, 15, 6].

Prefetching multiple files for each prediction, on one
hand, could take advantage of available cache space and
disk bandwidth to potentially increase the predictive accu-
racy, which can reduce the program stall-time. On the other

hand it will consume additional cache space and disk band-
width, which can bring down the system performance if it
is not done wisely. Thus it is important to find the cost-
effective performance between the number of files predicted
per event and the predictive accuracy potentially could be
increased.

The success of file prefetching depends on file predic-
tion accuracy: how accurately an operating system can pre-
dict which files to load into memory. Probability and the
history of file access have been widely used to perform file
prediction [10, 12, 4, 5, 11, 17], as have hints or help from
programs and compilers [18, 3].

Files are accessed by programs, and programs are ex-
ecuted on behalf of users. This suggests that consecutive
accesses to different files should not occur without reasons.
Our earlier works [22, 23] have shown that programs access
more or less the same set of files in roughly the same order
every time they execute, especially when they are executed
by the same user. Therefore consecutive accesses to differ-
ent files can be more accurately predicted given knowledge
about which programs and users are accessing them.

This paper presents the Program-based and User-based
Last n Successors (PULNS) file prediction model, a refine-
ment of our earlier work, Program-based and User-based
Last Successor (PULS) [23], based on the observation that
program-based and user-based successors could still change
in some cases. The n in PULNS indicates the maximum
number of files PULNS can predict per prediction.

We compare PULNS with Last-Successor (LS) for dif-
ferent values of “n”” in PULNS. Our experiments show that,
compared with LS, PULNS makes more correct predictions
and fewer incorrect predictions, which should improve the
overall performance in a real system. Our results also show
that PUL2S (n = 2) can reduce as much as 48% of incorrect
predictions made by LS with the cost of predicting 1.36 files
per event on average. As a result, PUL2S provides the best
cost-effective performance in terms of the number of files

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 16th Annual Intemational Symposium on High Performance Computing Systems and Applications (HPCS’02)
0-7695-1626-2/02 $17.00 © 2002 IEEE



predicted each time and the predictive accuracy improved.

We also examine the cache hit ratios of Least Recently
Used (LRU) with no file prediction, and LRU with PULRS.
We observe that PULNS always increases the cache hit ratio,
and in the best case, LRU and PUL1S (n = 1) together
perform almost as well as a cache up to 80 times larger using
LRU alone.

2 Redated Work

Most probability-based prediction algorithms use the
history of system-wide file access, which does not consider
and take advantage of the corresponding program and user
information like PULNS does.

Griffioen and Appleton use probability graphs to predict
future file accesses [5]. The graph tracks file accesses ob-
served within a certain window after the current access. For
each file access, the probability of its different followers ob-
served within the window is used to make prefetching de-
cisions. Their simulations show that different combinations
of window and threshold values could largely affect the per-
formance.

Kroeger and Long predict the next file based on proba-
bility of files in contexts of FMOC [10]. Their research also
adopts the idea of data compression like Vitter et al. [21],
but they apply it to predicting the next file instead of the
next page.

Lei and Duchamp use pattern trees to record past execu-
tion activities of each program [12]. They maintain different
pattern trees for each different accessing pattern observed.
A program could require multiple pattern trees to store sim-
ilar patterns of file accesses in its previous execution. This
imposes keeping duplicated information on the system. Pat-
tern trees of a running program are compared with the cur-
rent accessing pattern. If a match found, files in that pattern
tree are prefetched to memory. One of the main differences
between their algorithm and PULNS is that PULNS makes
the predicting decision for each individual file, so it can
adapt to different patterns of file access more rapidly.

Vitter et al. adopt the technique of data compression to
predict the next required page [4, 21]. Their observation
is that data compressors assign a smaller code to the next
character with a higher predicted probability. Consequently
a good data compressing algorithm should also be good at
predicting the next page more accurately.

Patterson et al. develop TIP to do prediction using hints
provided from modified compilers [18]. Accordingly, re-
sources can be managed and allocated more efficiently. Ex-
tra coding in programs and language dependence are disad-
vantages of this type of approach. In the case of no access to
source codes there is no way to generate hints. Hints gener-
ated statically by compilers sometimes may not be very use-
ful if file accesses cannot be decided until runtime. Chang

and Gibson design a tool which can transform UNix appli-
cation binaries to perform speculative execution and issues
hints [3]. Mowry et al. use a modified compiler to provide
future access patterns for out-of-core applications [13].
Kotz and Ellis define representative parallel file access
patterns in parallel disk systems [9]. Cao et al. define four
properties that optimal predicting and caching model should
satisfy [2]. Palmer and Zdonik use unit pattern to prefetch
data in database applications [17]. Kimbrel et al. exam-
ine four related algorithms to find out when a prefetching
algorithm should act aggressively or conservatively [7].

3 LSand PULNS Models

We start with a brief description of the LS model, fol-
lowed by the discussion of the reasons why PULNS is a
better model than LS, and finally we explain how to build
PULRS.

3.1 LS (Last Successor)

Given an access to a particular file A, LS predicts that
the next file accessed will be the same one that followed the
last access to file A. Thus if an access to file B followed
the last access to file A, LS predicts that an access to file B
will follow this access to file A. This can be implemented
by storing the successor information in the metadata of each
file. One potential problem with this technique is that file
access patterns rely on the temporal order of program exe-
cution, and scheduling the same set of programs in different
orders may generate totally different file access patterns.

3.2 PULNS (Program-based and User-based Last
n SUCCESSors)

Lacking a priori knowledge of file access patterns, many
file prediction algorithms use statistical analysis of past file
access patterns to generate predictions about future access
patterns. However, probability can only tell us what pat-
terns of file accesses are and how frequently they occur, but
not why these patterns exist. One disadvantage of using
the probability approach is that executing the same set of
programs can produce different file access patterns even if
the individual programs always access the same files in the
same order. Because it is the individual programs that ac-
cess files, probabilities obtained from the past file accesses
of the system as a whole are ultimately unlikely to yield the
highest possible predictive accuracy. In particular, proba-
bilities obtained from a system-wide history of file accesses
will not necessarily reflect the access order for any indi-
vidual program or the future access patterns of the set of
running programs. Consequently, file prediction algorithms
should not adopt the system-wide history of file accesses
to make predictions. Even the system-wide history of file
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accesses is changeable when we repeat executing the same
set of programs, however, what could remain unchanged is
the order of files accessed by the individual programs, par-
ticularly when each program is executed by the same user,
which can be useful in predicting what files will be used
next for individual programs. In other words, file reference
patterns can describe what has happened more precisely if
they are observed for each individual program together with
the user executing that program. As a result, better knowl-
edge about past access patterns leads to better predictions
of future access patterns.

PULNS incorporates the knowledge about running pro-
grams and corresponding users to generate a better succes-
sor estimate. More precisely, PULNS records and predicts
successors specific to programs and users for each file that
is accessed. The n in PULNS represents the number of the
most recent distinct program-specific and user-specific suc-
cessors that PULNS could predict each time. For example,
PUL1S (n = 1) means that only the most recent succes-
sor of this type is predicted after each file access. In other
words, PUL1S can be viewed as the PULS model discussed
in our earlier work [23]. PUL2S (n = 2) predicts the
most recent two successors observed this way when there
are more than one existing for a given file. However, it
still predicts only one successor if the program-specific and
user-specific successor for a given file has never changed.

We will use PUL1S as an example to explain how
PULNS works. Suppose a file trace at some time shows
two different pattern AB, and pattern AC' after an access to
A. If B and C tend to alternate after A, then either the
probability-based prediction or the LS will do especially
poorly. But the reason that pattern AB and AC occur may
be quite different. For instance, in Figure 1, the file access
pattern AB is seen to be caused by the user U; executing
the program P, while the pattern AC is caused by U; run-
ning another program, P,. In the meanwhile, pattern AD
comes from the case when the user Uy executes P, and
pattern AE will be observed when the program P, is exe-
cuted on behalf of user Us. In other words, what is really
behind these four patterns of consecutive file accesses is the
execution of two different applications, P; and P, executed
on behalf of three different users, Uy, Us and Us. After we
collect this information (a set of pairs consisting of “pro-
gram name” and “user-successor”) for file A, nexttime it is
accessed we can predict either B, C, D, or E depending on
which user (Uy, Us, or Us) is running P; or P, or provide
no prediction if A is accessed by another program or user.
Of course, if a particular program executed on behalf of a
given user accesses multiple different files after each access
of a particular file, then the corresponding successors will
change.

Similarly, PUL2S (n = 2) predicts the most recent two
distinct program-specific and user-specific successors if the

program-specific and user-specific successor ever changed.
For example in Figure 2, if program P; executed by U; ac-
cesses a different file, F', other than B after an access to
A. PUL1S will predict F' from now on, while PUL2S will
predict both F' and B since they are the most recent two dis-
tinct successors that file A keeps for program P; and user
Us.

Figure 2. PUL2S model

Table 1. Metadata of Figure 1 kept under the
PUL1S model

File (program name, user-successor)
A | (P, UiB,UsD), (P2, U.C, UsE)
B (P, NIL)

C (P2, NIL)

There are two issues that need to be addressed. The first
issue is how to collect the metadata in terms of (program
name, user-successor) for each file. Programs are executed
as processes, SO we can just store the program name and
user ID (UID) in the process control block (PCB). For each
running program (say P) executed by a user (say U), we
also need to keep track of the file (say X), which P has
most recently accessed. When P accesses the next file (say
Y') after X, we update the metadata of X with (P, UY),
and the next time that P accesses X on behalf of U, PUL1S
can predict that the next file accessed will be Y.

In the example of Figure 1, when P; (say executed by
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U4) accesses the next file (say B) after its access to A, we
update the metadata of A with (P, Uy B), and next time P,
accesses A on behalf of Uy, PULLS can predict that the next
file accessed will be B. Similarly, A also keeps (P;, UsD)
as parts of its metadata. The metadata of files in Figure 1 is
shown in Table 1.

In the case of PUL2S (n = 2), we keep the most recent
two distinct program-specific and user-specific successors
for each file. So, for the file A in Figure 2, the correspond-
ing metadata (P;, Uy B) now becomes (P, U, F'B).

The second issue is how large the metadata needs to be
in order to make accurate predictions, which is not quite
as simple as the first. ldeally, for each file we would like
to record the name of every program that has accessed it
before, along with the program-specific and user-specific
successors to the file, so that we know which file (or files)
to predict when the same program executed by a particu-
lar user accesses the file again. In reality, this may be too
expensive for files used by many different programs. Con-
sequently, we may need to limit the number of (program
name, user-successor) pairs kept for each file. However,
our simulation shows that the vast majority of files are ac-
cessed by five or fewer programs and thus metadata storage
is not a problem.

A few terms need to be clarified here. The first is that
when we use the term “program” we mean any running ex-
ecutable file. Thus a driver program that launches different
subprograms at different times is considered by PULNS to
be a different program from the subprograms, each of which
is also treated independently. The second is that ideally both
“program name” and “file name” should include the entire
pathname of the files so files with the same name in dif-
ferent directories can be handled appropriately. In practice,
we may replace the full-path file name with its inode (index
node) number or we can apply a simple hash function to the
full-path file name so we do not have to store the full-path
file name for each file.

4 Experimental Results

In this section, we will discuss the trace data we used
to conduct our experiments, and how we compare perfor-
mance of LS and PULRS.

4.1 Simulation Trace

The key requirement of the file trace we need is the in-
formation of corresponding programs and users initiating
events of file access recorded in the trace. User information
is available in some traces we studied. However, the pro-
gram information was not recorded in all the file traces we
have access to, except the DFSTrace from the Coda project
[8, 14]. Thus we selected DFSTrace to evaluate the perfor-
mance differences among models we compared.

File traces in DFSTrace were collected from 33 ma-
chines during the period between February of 1991 and
March of 1993. We used data from September 1992 to
February 1993 from four machines, Barber, Mozart, Dvo-
rak, and lves. Barber was a server, Mozart was a desktop
workstation, Dvorak had the highest percentage of write,
and Ives hosted the most users. Because DFSTrace does
not record events of READ or WRITE in most cases. There-
fore, instead of tracking every READ or WRITE event, we
track only the FORK, EXECVE and OPEN events in our
simulation.

As mentioned above, PULNS needs to be able to deter-
mine the name of a program and its user in order to gen-
erate the predictions. Because we cannot obtain the name
of any program or user that started executing before the be-
ginning of the trace, we exclude EXECVE events forked by
processes whose user IDs (UID) are unknown. This is be-
cause DFSTrace only reports UID of the child process in the
FORK event. By catching the UID of the new child process,
we have the UID we need for all the following EXECVE and
OPEN events from that child process. Similarly, we also
have to exclude OPEN events initiated by any process ID
(PID) which started before the beginning of our trace due
to the unknown program name for that PID. Intuitively this
filtering has no effect on the results of our experiments be-
cause the filtering is based only on the time at which the
program began. In a real system such filtering is not neces-
sary because all program names and user names are known.

One may claim that the DFSTrace does not reflect the file
access pattern we see today, particularly in file or program
sizes and the rate at which file requests arrive. However,
our simulation depends on neither of these, so they won’t
affect the results. Moreover, most file accesses are sequen-
tial [1], modern operating systems can already identify se-
quential read accesses and techniques such as prefetching
the next several data blocks for sequential read have been
implemented. Therefore we believe the file traces we used
are still adequate to evaluate our algorithm.

4.2 Methodology of Performance Evaluation

[799% 1]

We are interested in how different values of “n” in
PULNS could affect the performance and the related costs
when compared with LS. We used the filtered trace data to
evaluate LS, PUL1S, PUL2S, and PUL3S respectively.

Both LS and PULL1S predict one file at a time. We score
LS and PUL1S by adding one for each correct prediction
and zero for each incorrect prediction to their total scores.
We normalize the final scores of PUL1S and LS to the num-
ber of predictions, not to the number of events, to obtain the
predictive accuracy. This is because the first time that a file
is accessed there is no previous successor to predict and so
the failure to make a prediction the first time cannot be con-
sidered incorrect. Since our simulation trace is very long
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(six months), it turns out that the effect of this compulsory
error is negligible and does not affect the comparison of pre-
dictive accuracy in our experiments. We also score PUL2S
and PULS3S the same way we score LS and PUL1S. A more
detailed discussion of PUL2S and PUL3S will follow later.

4.3 Comparison of Predictive Accuracy

Figure 3 displays the comparison of predictive accuracy
between LS and PULNS. It is clear that PULLS delivers a
higher predictive accuracy than LS in all machines. Both
PUL2S and PUL3S also perform better than LS. It is worth
pointing out that PUL2S outperforms PUL1S more than
PUL3S outperforms PUL2S, which indicates that keeping
two program-based and user-based last successors for each
file can be a cost-effective way to increase the predictive
accuracy.

One pitfall in comparing prediction models in terms of
predictive accuracy is that higher predictive accuracy does
not assure the success of a model because the scores are usu-
ally normalized by the number of predictions made, which
does not include those cases where no prediction was made.
Consider two prediction models, A and B. If A makes 40
correct predictions, 40 incorrect predictions, and not mak-
ing any prediction 20 times out of a total of 100 file ac-
cesses, then A’s predictive accuracy is 50%. Suppose B
makes only 2 correct predictions, 1 incorrect prediction, and
not making a prediction 97 times. B’s predictive accuracy
is 67%, but model B is almost useless in practice.

Clearly, in order to examine the real performance of a
prediction model, we need other information besides pre-
dictive accuracy. Thus, we use LS as the baseline to evalu-
ate the detailed performance of PULNS in three categories.
The first category is the percentage of total predictions (in-
cluding correct and incorrect predictions) made by PULNnS
as compared with LS. This percentage should not be to too
small, otherwise PULS may be an unrealistic model just like
the model B above. The second is the percentage of cor-
rect predictions made by PULNS as compared with LS. This
number should be as high as possible. The last category is
the percentage of incorrect predictions made by PULNS as
compared with LS. Ideally this percentage should be less
than 100%, indicating that PULNS model makes fewer in-
correct predictions than LS.

4.4 Performance by Category

Figure 4 displays the performance in the category of to-
tal prediction. As a reminder, members of PULNS fam-
ily mainly differ in the maximum number, n, of files they
could predict each time. Thus, the number of cases where
a prediction was made is the same in the three members
of PULNS family we examined. For simplicity, we only
show the data from PUL1S. It indicates that the percentage

100

EY
80T 1 i m
S
> 07 — H
£ 601 — H|oLs
2 BPULLS
S 50 - H
b OPUL2S
2 s - (ZPuL3s
3
T 30 — H
=

20 H — H

10 H — H

0+ 1

Barber Mozart Dvorak Ives

Figure 3. Predictive accuracy of LS and
PULNS

of events where a prediction was made by PUL1S is only
about five to seven percent less than that of LS. This is close
enough to consider PULNS to be a practical prediction algo-
rithm in terms of the number of predictions it makes. The
percentage of correct prediction is shown in Figure 5. Fig-
ure 5 demonstrates that PUL1S can do roughly as well as
LS in correctly predicting files, while PUL2S and PUL3S
can do better than LS.

Figure 6 shows the percentage of incorrect prediction.
To get a closer look at the relative performance in terms
of reducing incorrect predictions, data in Figure 6 is nor-
malized to that of LS and displayed in Figure 7 (that is
why the percentage of LS is 100% in Figure 7). Figure 7
clearly demonstrates that PULNS family can make signifi-
cantly fewer incorrect predictions than LS. PUL1S reduces
about 21% (Dvorak) to 27% (Barber) of incorrect predic-
tion compared with LS. PUL2S can do approximately 37%
to 48% less (in lves and Barber), while PUL3S can do about
42% to 55% less (in Dvorak and Barber). As we discussed
before, incorrect predictions come with a cost, and avoiding
this cost directly translates into better system performance.

As mentioned earlier, PUL2S and PUL3S could predict
two or three file per prediction respectively. However, the
program-based and user-based last successors can remain
unchanged in some cases, which could lower the average
number of files predicted per event (i.e. per file access) for
PUL2S and PUL3S. Take Barber for example, our simula-
tion shows that the average numbers of files predicted per
event for PUL1S, PUL2S, and PUL3S are 0.92, 1.36, and
1.64 respectively. Obviously PUL2S provides a better cost-
effective performance than PUL3S when we consider the
number of files predicted each time and the performance
improvement comes with it.

Because we do not count the cases where no prediction
was made when calculating predictive accuracy, so the num-
ber of events in the trace is larger than the number of cases
where a prediction was made. Because PUL1S predicts one
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file at a time whenever a prediction was made, so the num-
ber of files predicted per event is smaller than one (0.92) for
PUL1S. Similarly, the numbers for PUL2S and PUL3S are
smaller than two and three respectively.

N
1)
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90 +—|
80 +—|
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40
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10 +—|

% of events where a prediction was made

o
\
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Figure 4. Total prediction made by LS and
PUL1S
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Figure 5. Correct prediction made by LS and
PULNS

Figure 5 and Figure 6 indicate that file prediction can be
more accurate if we take advantage of the user and program
information. To understand the underlying reason for the
performance improvement in PULNS, we collect the num-
ber of distinct program-based and user-based successors for
each file that has at least one successor of this type in our
simulation. The result is listed in Table 2. We will use the
percentage collected from Barber for discussion.

The first row in Table 2 shows that 42.33% of the files
have only one program-based and user-based successor ob-
served through the entire simulation. In other words, their
program-based and user-based successors never change.
For those cases, if we know the file access is initiated by
which program and the user executing that program, PUL1S
can always correctly predict the next file needed by that
program. The second row shows that 13.52% of files have
two distinct program-based and user-based successors. For
those files, PUL1S will make incorrect prediction in some
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Figure 6. Incorrect prediction made by LS and
PULNS
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Figure 7. Incorrect prediction made by LS and
PULNS (normalized to LS)

cases, however, PUL2S can assure the success of the pre-
diction it makes. The last row shows that about 18.91% of
the files have observed three or more program-based and
user-based successors.

Table 2 uncovers an important fact — most files have a
limited number of program-specific and user-specific suc-
cessors, which is the underlying reason for the performance
improvement achieved by PULNS. As a result, even in the
worst case, PUL3S can guarantee the success of at least
70% to 80% of the predictions it made in our simulation.

Table 2. The number of program-based and
user-based successors observed for each file

number | Barber | Mozart | Dvorak lves
1 42.33% | 16.70% | 21.83% | 20.43%
2 13.52% | 10.51% | 14.48% | 12.03%
3 25.24% | 41.53% | 35.38% | 37.73%
3+ 18.91% | 31.26% | 28.31% | 29.81%

One last note about the percentage of correct prediction
in Figure 5. The common measurement of correct predic-
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tion is very simple. If the predicted file is the next file
needed by the system, regardless which program initiates
the access to that file, then it is considered as a correct pre-
diction. Otherwise it is viewed as an incorrect prediction.
In our simulation, we use this common measurement to ob-
tain the percentage of correct prediction as seen in Figure 5.
However, this approach does not fully reflect the real per-
formance of PULNS. In general, a system could have multi-
ple programs in execution concurrently. A program-specific
and user-specific prediction made for one program is not
likely to be the same file predicted for other programs, much
less when they are executed by different users. Besides,
programs are often interrupted for the sake of cache miss
or fair scheduling during their execution. Consequently the
file predicted for the current program may not satisfy the file
access coming up next initiated by other running programs
in the system. In other words, the percentage of correct pre-
diction in Figure 5 (or the predictive accuracy in Figure 3)
shows the performance of PULNnS when the cache memory
in the system can only hold one predicted file. Since mod-
ern computer systems have cache memory large enough to
hold more than one predicted file, PULNS should perform
better than what Figure 5 demonstrates in a real system. We
can obtain a more realistic performance of PULNS by mea-
suring the cache hit ratio when PULNS is applied. We will
discuss this in the next section.

45 Cache Performance

As explained in the previous section, we want to know
how PULNS performs in terms of cache hit ratio besides
its percentage of correct prediction observed by the com-
mon measurement. We set the cache size according to the
number of files it can hold for two reasons. The first is
that file size is usually small, so the entire file can often be
prefetched into cache [19]. The second is that in the case
of large files, sequential read is the most common activ-
ity. As we stated earlier, modern operating systems can al-
ready identify sequential read accesses and techniques such
as prefetching the next several data blocks for sequential
read have been implemented. We simulate cache with dif-
ferent sizes ranging from 25 files to 2000 files, and com-
pare the cache hit ratios between the LRU caching algo-
rithm with no prediction and the LRU caching algorithm
with PUL1S. The reason we chose PUL1S is that it pre-
dicts one file per prediction, so we can get the conserva-
tive estimation of the real performance of PULNS. LRU has
been widely employed [24], so it is an appropriate candidate
used to evaluate the effectiveness of prediction algorithms
in terms of cache hit ratio. Figure 8 shows that when using
PULLS prediction, the cache always performs better than
when using LRU alone, regardless of cache size, and in the
best case (Barber) it performs almost as well as a cache up
to 80 times larger using LRU alone (cache hit ratio 89.37%

for cache size 25 when PUL1S applied, versus 89.81% for
cache size 2000 using LRU alone).
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Figure 8. Cache hit ratio of LRU (lablled LRU)
and LRU with PUL1S (labelled PUL1S)

5 FutureWork

The DFSTrace is almost 10 years old. We chose it be-
cause it contains the program and user information, which
is absolutely necessary to the PULNS model. In the future,
we would like to collect our own traces that PULNS can
use, and examine how PULNS performs under more recent
traces. Ultimately, we will build the PULNS into the filesys-
tem and evaluate its performance in a real system. There
are still some alternatives may improve the performance of
PULNS and are worthy of further exploration. For example,
files existing temporarily (such as those in /tmp directory)
usually will not get the same name next time they are cre-
ated again. If so, then they can never be predicted correctly
by PULNS, and there is no need to store their information.

6 Conclusions

As the speed gap between CPU and the secondary stor-
age continues to widen and is unlikely to narrow in the near
future, file prefetching will continue to remain a promising
way to keep programs from stalling while waiting for data
from disk. Incorrect prediction can be expensive. Prefetch-
ing multiple files per prediction could increase the proba-
bility of correction prediction. However, prefetching too
many files each time will likely lower the over system per-
formance in practice. Finding the right balance between the
number of files predicted per prediction and the predictive
accuracy potentially could be increased is very important to
the system performance.
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File accesses are driven by the programs and the users
using them, not by previous access patterns. By tracking
programs and users initiating file accesses, we successfully
avoid many incorrect predictions. We show that PULNS
can reduce a significant percentage of incorrect prediction
made by LS. Compared with LS, about 37% to 48% of in-
correct predictions can be reduced in PUL2S as seen in Fig-
ure 7. Consequently, the overall performance penalty in a
system caused by incorrect predictions can be significantly
reduced. With the cost of predicting 1.36 files per event
on average, we can conclude that PUL2S provides a bet-
ter cost-effective performance than PUL3S. We also com-
pare the cache hit ratios of LRU with and without PUL1S.
The results show that with PUL1S, LRU can deliver a much
higher cache hit ratio.
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