
fived: A Session Layer Design to
Secure the Internet

Technical Report UCSC-WASP-15-01
November 2015

D J Capelis
mail@capelis.dj

Working-group on Applied Security and Privacy
Storage Systems Research Center

University of California, Santa Cruz
Santa Cruz, CA 95064

http://wasp.soe.ucsc.edu/



Abstract

This technical report outlines the design of fived. An ongoing project to bring features currently
implemented in the application layer of the Internet into the core network stack. These features
would traditionally describe OSI 7-layer model’s session layer. This design would have the greatest
impact on the security and flexibility of our networks.



1 Introduction

On today’s network, an unwieldy array of different components are tasked with security responsi-
bilities. Application developers routinely make mistakes in their security critical code, leading to
bugs that manifest as worms and malware. Access control mechanisms on the network typically
rely on where a user’s computer is located, not on who that user is. The systems that authenticate
users remain separated from the firewalls tasked with controlling access to various network ser-
vices. The network is without the information required to make intelligent access control decisions.
These problems are compounded by the Internet’s remarkable resistance to change. Many security
technologies have failed to achieve adoption over the years. Fived is a design for a unified session
layer that integrates security features into the core of the Internet, one user, one network or one
application at a time.

Let’s begin with the problem of access control. Firewalls, the main source of access control in
most deployed networks, dictate access control policies based on the host’s IP address. Any network
that wishes to support legitimate users’ ability to access services from networks not directly owned
by the organization must support a mechanism to bypass the security perimeter; this is typically
provided in the form of a Virtual Private Network (VPN) [12] connection. Likewise, organizations
that wish to offer courtesy access to guests have to institute registration processes and network
partitioning just to allow visitors to check their e-mail without exposing internal services. In more
complex organizations, where users have various levels of access, clearance or affiliation, network
partitioning can get even more complex, arduous and brittle.

A session layer design provides the user with the notion of a session, but more importantly,
allows them to authenticate and open up the range of services available to them. This layer makes
access control decisions based on who the user is, what groups or roles that user may be a part
of and any number of additional policies the network administrator might wish to support. This
provides the type of comprehensive access control modern networks need.

Yet the benefits of a robust session layer extend beyond simplifying the lives of network admin-
istrators and reducing the complexity of security configuration. The current Internet architecture
forces each individual network application to write large amounts of sensitive code to provide se-
curity features, including authentication and encryption. Applications often simply omit some of
these features, while the remainder provide a wide array of encryption and authorization solutions
of varying quality in terms of usability or security. A session layer puts security features on-par
with core networking concepts like congestion control. With a session layer in place, applications
can take advantage of one unified codebase to perform these types of sensitive operations. Support
for new authentication mechanisms, new encryption technologies, or other new security features,
can be added in one place and made immediately available to all applications running on the session
layer.

One of the hardest problems of changing the Internet is adoption. Worse, in the next sev-
eral years, new architectures which seek to gain acceptance on the Internet face several specific
challenges. IANA has allocated their last free block of IP addresses [14] to the Regional Internet
Registries and each has put in place emergency procedures to manage their last remaining IPv4 ad-
dresses. Over the next years, the Internet will reel as it reactively deploys the solutions networking
researchers converged on 15 years ago. Due to this unfortunate timing, any realistic deployment
of new networking technologies reliant on commercial network operators to adopt new equipment,
standards or practices will be challenged for several years to come. Yet the switch to IPv6 will
not solve many of the pressing problems that have become more apparent over the last decade and
a half since IPv6 was designed. The Internet can’t wait another 15 years for new technologies to
reach deployment.

1



In an environment where developing a compelling improvement is merely a necessary, but
not sufficient condition for deployment it is critical that any proposed changes provide a realistic
transition plan. Fived ’s key deployability advantage is that it follows the end-to-end principle [22]
allowing progress to trickle in from the edges of the network to the core. Potentially lethargic core
network operators do little to harm the adoption of fived. Another key component of a deployment
plan is that the system must not require a large critical mass before organizations begin seeing
benefits. Users of fived gain some benefit right away. Downloading code is enough to allow users
to start controlling access to their internal services. A set of compatibility libraries, layers and
runtime tools can provide users the ability to obtain advantages from fived even before applications
are adapted to interact with the session layer natively.

The final defining feature of a viable architecture change is its ability to lead us away from
the current level of stagnation on the Internet. A new architecture change not only needs to
overcome its own deployment challenges, but should attempt to open up the Internet in ways that
allows increased flexibility in the future. The Internet’s resistance to change isn’t sustainable and
without modifications, the network will not be flexible enough to head toward the future. Future
technologies must be designed so if they succeed, the Internet can absorb new ideas, innovations
and technologies at a higher rate than the current network.

The session layer as implemented in fived is extendable. Creating a new service can be as simple
as picking a name for it, adding some lines to a configuration file and writing as little as 10 lines of
code. This architecture is considerably more flexible than the fixed size headers most of our modern
Internet protocols use today. The core services in this document should be useful for years to come,
but future researchers can experiment with new variants on these services merely by adding it to
their local session layer and beginning to use it. Standards can spread either organically or via
vendors working together in a formal process. Innovative ideas can be demonstrated easily and
adopted quickly as consensus develops.

In addition to ensuring that our own additions are flexible, fived aims to ensure that the underly-
ing components of the current Internet grow easier to replace. This is the job of the session initiator,
the component that establishes a session. The session initiator resolves names to addresses, deals
with various transport protocols and sets up connections or an ability to send datagrams in future
networks. Adding a new transport protocol or changing Internet addressing merely requires mod-
ifications to the session initiator and any application using it can adapt. This allows the layers
underneath the session layer to change and accept new technologies as well.

Fived provides solutions to a broad range of recent problems, with specific focus on embedding
trustworthiness into the fabric of the Internet. The design has a transition plan, a design which
allows for a suite of compatibility tools and has the potential to bypass many of the roadblocks
during what’s likely to be a messy transition process to IPv6. Finally, the design serves as a catalyst
for past, present and future technologies by ensuring that if fived is successful, the deployment
barrier on the Internet is reduced.

2 Related Work

One of the challenging parts about explaining fived has been in comparing it to existing technolo-
gies. Fived ’s design goals revolve around incorporating solutions to problems where we know the
network has needs. The solutions fived implements often aren’t particularly different than existing
technologies. It isn’t in the choice of encryption algorithm or the protocol that fived ’s contributions
are really understood. It is in the way this session layer enables the use of these technologies in
a way that creates a coherent architecture between every application using fived. It is in the way

2



that fived shifts the responsibility into the underlying layers and eliminates sections of security
critical code required in many of today’s applications. It is in the way fived strictly adheres to the
end-to-end principles and eschews any requirement that the core networking hardware know about
our protocol for it to succeed. It is in the way the session layer architecture enables application
access to these technology in a uniform way across the deployment base.

Which isn’t to say no other projects have had these goals. Service-oriented network designs,
such as those seen in Planetlab [8] and GENI [19] often have similar design goals. Chandrashekar’s
paper on a Service Oriented Internet [6] comes up with a strikingly similar design in some respects.
In this paper, a session layer with a service-oriented architecture is fairly clearly proposed and
outlined. The main difference between these works and those of fived is a difference in how these
systems interact with legacy technology. Many of these designs fall under the category of “clean
slate” networking architectures, where the goal of the research is to clean up the Internet and switch
to a “better” architecture. Fived on the other hand, is what I like to call a “dirty slate” design.
The goal of fived is to add the features into the existing network that seem to be missing. When
there’s a way to do it that seems to prod the network towards a cleaner architecture, fived takes
the opportunity, but the guiding goal is to get the features into the network. The resulting systems
turn out fairly different.

On a feature by feature basis, there are many comparisons between fived and other systems:

Service discovery allows a computer to query whether a service is running. Traditionally this is
done via attempting to establish a connection on a standardized port number and assuming
that if a service exists on the machine, it will be listening there. Fived allows a user to instead
specify services using a name, a minor improvement to usability that shifts the namespace
from numbers to characters. Other software that has tried this approach includes the portmap
[23] service, which protocols like NFS [24] rely on.

Encryption on the Internet is hardly a new feature, SSL [11] and later TLS [9] have been providing
encryption services on the network for awhile. Newer protocol proposals, like MinimaLT [20],
CurveCP [5] and QUIC [25] offer transport security with improved cryptographic properties.
Fived implementations can include any or all of these protocols. Since the session layer is
application protocol agnostic, it’s transparent to layer 7 applications. This is similar to how
Stunnel [27] or SSH tunnels [28] work. Those tools, of course, have few ambitions beyond
providing transparent encryption.

Authentication and access control on a network level is currently a problem solved by a com-
bination of VPNs [12] and firewalls [7]. Surprisingly, existing networks have made these
technologies work from time to time, but it seems not unreasonable to point out that in
practice networks experience problems using access control technologies which only make de-
cisions based on what number a user’s computer currently is assigned by their network. A
VPN exists on most networks to allow an end-user to borrow a number from another network
when the one their computer has doesn’t allow them to access the resources they want. Fived
on the other hand, ties traffic streams directly to a user’s identity and uses that to make
access control decisions.

Network mobility is a feature which allows a device to switch underlying network transports
without breaking their network connections. This feature is used today in cell phone networks
[15] where devices roam between cells routinely and so mobility is built into the low-level
network protocol. OpenFlow [18] is another system which has mobility features, allowing
devices to move network flows from endpoint to endpoint. Both require extensive levels of
support in the networking hardware. Fived implements these features in the session layer.

3



Stream multiplexing has become common again with the introduction of HTTP/2.0 [4] which
formalized SPDY’s [3] approach of multiplexing multiple HTTP streams over a single TCP
connection. Fived ’s multiplexing is somewhat different, since it is protocol agnostic. This
allows any traffic between two endpoints to share a transport stream.

Virtual hosts allows application protocols servers to host more than one hostname on the same
IP address. [16] This technique is present in some application protocols, like HTTP and
SMTP, but is not uniformly deployed through the network. Generally, when an application
connects to a port on a host, the service is not given hostname information to allow it to
appropriately determine which content to send. Fived introduces protocol-agnostic virtual
hosting by enabling the hostname the user specifies to alter service routing in the session
server.

Distributed identity has increased in prevalence since the launch of OpenID [21] a decade ago.
Since then, many large web companies have shipped their own incompatible distributed iden-
tity systems, from Facebook [10] to Twitter [26] to Google [13] there’s as many different
identity protocols as there are companies that want to control identity information. Fived
also includes a light-weight distributed identity protocol, which allows users to use an authen-
ticated session to prove their identity to third-parties. One difference with fived ’s protocol
however, is that it eliminates the direct communication between the third party identity con-
sumer and the identity provider, thus allowing for distributed identities that don’t require
users reveal to the identity provider where they’re using the identity.

3 Technical Detail

3.1 Core Services

The following core services are the primitives I’ve selected to put into fived ’s default set. Fived ’s
session layer protocol is loosely derived from the tcpmux protocol specified in RFC 1078 [17], from
1988. The basic tcpmux protocol is simple and can be implemented in under 100 lines of C. Each
of the core services fived adds take anywhere from tens of lines of code to several hundred lines
of code. These services work together to provide a broad range of session services. The essential
features include service multiplexing, role-based authenticated access control, transparent session-
wide encryption, mobility, virtual hosting and distributed identities.

Let’s examine each of the core services in depth:

3.1.1 LIST

Figure 1: LIST Command

LIST enabled service discovery. LIST outputs a multi-line message which must be a list of the
service names of the supported services, one name per line.[17] “Supported services” means services
which the user is able to access. Services with restrictions only appear in LIST after a user has
authenticated themselves with an authorized set of credentials. When LIST is followed by a service

4



name, fived returns the service name if it exists. These two modes allow for dynamic service and
extension discovery.

�LIST�
LIST
MULTIPLEX
TLS
HOST
http

Example Usage: A typical use of the LIST command on a fived daemon which supports a the core
features LIST, MULTIPLEX, TLS and HOST as well as a service called “http.”

3.1.2 AUTH

AUTH allows a user to authenticate a session. The exact mechanism to do this is server-specific as
each organization tends to have their own requirements for credentialing users. The current fived
prototype uses the Pluggable Authentication Modules (PAM) [2] system in place on most UNIX
machines. The AUTH service negotiates authentication technologies and proceeds to engage the
client in a mutually agreed challenge/response protocol. When the back-end authentication service
is satisfied of the client’s identity, the AUTH service relays the results to the client and attaches an
identity to the session. After a session has been granted a certain identity, they may be authorized
to access restricted services or other resources. The fived daemon can also include a mechanism to

Figure 2: AUTH Command

pass the session’s authenticated identity information through to underlying services they connect
to.

Finally, depending on the service provider’s setup, they may not wish this service be supported
until after the user gains a secure channel for their session using the TLS service which is described
in the following subsection. In this case, AUTH itself acts as a restricted service until after TLS or
another acceptable encryption scheme is invoked.

3.1.3 TLS

TLS allows for session encryption. As the name might indicate, the TLS service is a command
to the session server to start a TLS handshake. After the client requests this service, the session
server and the client immediately engage in a TLS handshake and set up a secure channel. The
client should retain the certificate offered by the server for future connections to ensure security.
This is similar to how SSH handles key verification and has been moderately more successful than
the web-based model for TLS. However, the client should feel free to use other mechanisms, such
as the existing TLS PKI, to verify the certificate during first connect. After both the client and
the server has completed the TLS handshake, the session continues over an encrypted channel. In
addition, the server may choose to authenticate the client on the basis of a client-side certificate
they present during the handshake.

5



Figure 3: TLS Command

Here is an example of a user using the TLS service, then authenticating using AUTH and
receiving access to the service telnet which they then access over a secure and authenticated session:

�LIST�
TLS
AUTH
�TLS�
+ SUCCESS
a TLS handshake takes place and the session continues over a secure channel:
�AUTH <up,ext,pubkey>�
+ SUCCESS <up>
Enter Username: �researcher�
Enter Password: �secret�
Authentication as researcher successful
�LIST�
telnet
research-service
�telnet�
researcher@researchbox $

3.1.4 MULTIPLEX

MULTIPLEX allows more than one service on a session. In the basic protocol, when a client requests
a service, the connection is taken over by the service and there is no further interaction with fived.
Multiplexing allows a user to connect to a session server, encrypt their session, authenticate and
then access as many services as they need.

Figure 4: MULTIPLEX Command

Figure 4 shows a multiplexed session where multiple services are interacting with multiple
clients. The client computer runs a session manager that handles the client connections from that
machine while the service provider runs services through the fived daemon. There is no requirement
that the session manager and the clients be on the same machine, nor is there a requirement
that the session server and service daemons be on the same machine. This network-transparent
interaction allows for organizations to create unified session servers that are the frontend for all
of that organization’s services. This allows for centralized authentication and also could allow a
session server to act as a load balancer for various backend services.

In response to the MULTIPLEX command, fived begins the session multiplexing protocol. To
multiplex more than one application layer datastream on top of the same reliable bytestream, fived
uses a series of headers to delineate datastreams. Figure 5 shows the header format:

6



Datastream IDVer

 0                      8                     16                    24                    31

Length Until Next Header

Flags
3  4  5  6  7

Figure 5: MULTIPLEX header format

The header fits in 64 bits, which allows for easy manipulation on most modern processing units.
The first 3 bits comprise a version number, the next 5 bits contain flags, the subsequent 24 bits
contain the datastream ID which identifies the datastream which follows the header and the final
32 bits is the length, in octets, until the next header. The meaning of the flags are as follows:

• Bits 3 & 4 – Reserved for future use.
• Bit 5 – Complete – This flag is set for a one-sided close in a duplex transport protocol. (As

in shutdown() in the standard sockets interface.) The side that sends this flag is declaring
that they no longer will be sending data. The datastream ID is still active, unless or until
the other side sends a message with the complete or close flag. The length to next header
field must be set to zero when this flag is set. (This header may not proceed data using this
datastream ID.)

• Bit 6 – Close – This flag is set when the application using this datastream is no longer
willing to communicate. The other side should discontinue use. Any data for this ID will be
dropped. The length to next header field must be zero when this flag is set.

• Bit 7 – New – This flag is set by the server when the user asks to use a new service. The
datastream ID will be new and identifies data from that service from now on. The datastream
ID of zero is reserved for talking to the fived daemon.

This multiplexing protocol is sufficient for a user to access multiple services concurrently using
their session. Their authentication stays intact and the encryption continues. The session persists
until the user closes their connection to the session daemon.

3.1.5 HOST

Figure 6: HOST Command

HOST enables a session server to provide services for many hosts, virtual or physical. Depending
on the host selected, different services can be enabled. When a client issues the HOST command
they provide a hostname or service-group name. Assuming the session’s privilege level is sufficient
and the name the client requests exists, the daemon issues an affirmative response and associates
the session with the requested hostname. This allows the session layer to do virtual hosting at a
network level. This allows organizations to centralize sessions into a small set of session servers
which act much like load balancers do in existing networks.

7



3.1.6 DETACHABLE

DETACHABLE allows a client to disconnect from a session without destroying its state. If allowed
by the server, DETACHABLE is a mechanism to request the server maintain a session’s state while
a client disconnects from the server for a time. This is almost a network equivalent of the UNIX
screen [1] command. The DETACHABLE service provides the user with some sort of secret. This
secret could be a cryptographic certificate, a password, ASCII art or any piece of data appropriate
for the security requirements of the session. When the client disconnects from the session server,
the session’s state persists. Data from services which remain open will be queued. The amount
of time a session’s state is perserved and the amount of traffic it is willing to queue is up to the
administrator of the session server.

3.1.7 ATTACH

ATTACH allows a client to resume a previously detached session. The user provides the secret issued
by a previous invocation of the DETACHABLE service along with the number of bytes they’ve
received since the session began. After verifying the secret, the user will be allowed to resume their
session. However, since the user is likely to want to start a TLS session before providing the secret
to the ATTACH service to prevent man in the middle attacks, resumed sessions will use this new
TLS session, if one exists, instead of resuming an old one. (This also provides a re-key mechanism
for long-standing sessions.)

3.1.8 Broader Uses of DETACHABLE and ATTACH

It is not required to break a session connection before using ATTACH on a DETACHABLE session.
Instead, a user can attach another layer 4 connection to their existing layer 5 session. This allows
different quality of service properties or connection bonding. DETACHABLE and ATTACH can
also be used on one specific connection, which allows users to gracefully roam networks or even
physical machines.

3.1.9 PROVEAUTH and GETSIGNKEY

This service provides a lightweight distributed identity system. PROVEAUTH allows a user to
use their session to prove their identity to another system. Where AUTH creates a system of
authentication for the session layer, PROVEAUTH allows a user to prove that identity elsewhere.
This allows users to use an identity from one entity to authenticate with another.

In these types of protocols, there are three parties:

The identity provider (P) This is the entity providing the identity. It holds an authoritative
notion of identity for its domain and chooses to grant these identities to users. In fived this
entity is the session server providing the PROVEAUTH service.

The user (U) This is the end-user of the identity. In our session protocol, this is the user con-
trolling the session client.

The identity consumer (C) This is a separate entity who accepts identities asserted by the
identity provider and wishes to ensure that the user has a right to use a particular identity.

The protocol for a user to prove an identity to an identity consumer is as follows:

1. User (U) sends the identity to identity consumer (C) they want to prove is theirs.

8



4: sign(hash + id)

3: hash(nonce + name)

1: id

2: nonce + name

5: signed data

Consumer ProviderUser

Figure 7: PROVEAUTH Protocol

2. Consumer (C) responds with a challenge to user (U). The challenge consists of a nonce chosen
by C along with the canonical name for C.

3. User (U) concatenates the nonce and canonical names provided by the consumer (C) and
hashes them. User (U) then invokes PROVEAUTH on their authenticated session with the
identity provider (P) and provides this hash.

4. Provider (P) concatenates the hash with the identity the user’s (U) session is authenticated as
and signs the result using an RSA keypair whose public component is known by the consumer
(C).

5. User (U) returns this signed data to the identity consumer (C).
6. The identity consumer (C) proves that user (U) has a right to the identity by verifying the

signature on the data and ensuring the contents of the signed message matches the identity,
nonce and canonical name expected.

This protocol allows for something many other distributed authentication protocols don’t: it
allows users to use their identities elsewhere without revealing who they pass their identity too.
Unlike other major protocols (Facebook Connect, Twitter Auth, etc) where the person who controls
your identity has a complete list of where you use it and when, this protocol omits the ability for
identity providers to engage in that level of tracking.

GETSIGNKEY is a convenience service which offers the public key used to prove identities in
PROVEAUTH. This service provides one mechanism out of many that identity consumers could
receive the public keys for the signing keypairs for the identity providers they wish to support.

3.2 Session Initiator

Fived ’s session initiator has a larger goal of breaking network applications’ dependence on the lower
layers of the Internet. One of the major bottlenecks in the existing transition in-progress between
IPv4 and IPv6 is that applications are required to be aware of IP addresses. This knowledge
is necessary for applications even though users mostly specify computers by hostname. Yet, the
application itself is responsible for the name resolution. Once it resolves the name, it must pass
the correct layer 4 address to the underlying networking APIs.

9



The session initiator changes this. With it, the session API and session architecture take
control earlier. The session initiator performs the initial connection establishment on behalf of the
application. This allows applications using the session stack to move beyond the existing APIs
focused on addresses and port numbers and simply ask the networking stack for a service. The
session initiator needs to know two things: the name of the organization or computer the application
would like to communicate with and the name of the service the application would like to access.
With that, it does the rest and sets up the session.

Once applications move away from using addresses and port numbers, the underlying architec-
ture of the Internet can evolve without nearly as much hassle. The session initiator will be the only
thing that needs to change to allow applications to connect to each other in new ways. Arguably
this only moves the problem around, but importantly it moves it to a place better designed for
change, future expansion and alteration. The session layer is a more appropriate abstraction and
interface for applications on the Internet.

4 Performance

Performance is always a critical issue. Users see performance overhead as a cost to almost any
security technology. The cost users are willing to accept varies widely, but it seems fairly clear that
the higher the performance cost, the more difficult adoption becomes.

The performance concerns for fived lie in two main areas:

• The increased cost of connection establishment with the session layer.
• The increased overhead during a data transfer across the network.

From the perspective of a user, these two things can be measured with two metrics. The first
is the amount of time required from beginning a request until the first byte of data is available
to the endpoint application. This is commonly referred to as “Time To First Byte” (TTFB) and
generally establishes a lower bound on network latency. The second metric is the amount of time it
takes for a request to complete. This is harder to establish for fived since a session layer is generic
infrastructure that supports a variety of protocols with a variety of users and uses. There’s no firm
definition for the end of a request. So the metrics I used were Time to Thousandth Byte and Time
to Millionth Byte, which roughly correspond to a small one kilobyte data transfer or a larger one
megabyte data transfer across the network.

Experiments were conducted across the Internet using remote endpoints in two different cities.
Average round-trip latency between the computers was 28.36 milliseconds with a standard deviation
of 3.40 milliseconds. No significant packet loss was measured on the link. The server side computer
was connected to the Internet on a university network which routes to the Internet via fiber, similar
to most datacenter environments. The client-side computer was connected to the Internet on a lower
bandwidth connection which is similar to most residential environments.

Measuring 500 datapoints shows the Layer 5 Time To First Byte is larger than the Layer 4
Time To First Byte, showing the expected performance degradation caused by needing to interact
with a session server before being able to start an application protocol. While the difference is
highly statistically significant, there is also overlap between the standard deviation of each data
set as shown on the graph. Which means many individual uses of the session layer will not be
significantly distinguishable from ordinary network jitter.

The story gets better when you look at time to completion. The gap between Layer 4 metrics
and Layer 5 metrics narrows as more bytes are transferred across the connection, which shows

10



First Byte 1000th Byte Millionth Byte
0

100000

200000

300000

400000

500000

600000

700000

800000

82409.87 82975.08

714145.2

106622 107344

759155

Layer 4
Layer 5

T
im

e
 in

 M
ic

ro
se

co
n

ds

Figure 8: Layer 4 vs Layer 5 Performance

the dominating performance impact of the session layer is in the initial establishment of the ses-
sion. While this doesn’t show up as much with a short transfer of a thousand bytes of data, the
performance gap at a million bytes of data is substantially lower.

For an implementation of fived entirely in userspace with no kernel components and several
remaining optimization opportunities, this is not a particularly bad performance picture. It seems
likely that the performance of fived may be manageable.

First Byte 1000th Byte Millionth Byte
0

100000

200000

300000

400000

500000

600000

700000

800000

82409.87 82975.08

714145.2

106622 107344

759155

77391 77905

517508

Layer 4
Layer 5
Layer 5 Warm

T
im

e
 in

 M
ic

ro
se

co
n

ds

Figure 9: Layer 4 vs Layer 5 Performance with Warm Connections

Of course, this isn’t the whole performance picture of fived. The opportunities of a session layer
allow us flexibility application protocols otherwise don’t have. The data we’ve gathered so far tells
us the story of what happens when you need to get data from a peer across the Internet when you
don’t have a session established yet and need to set one up before being able to transfer data, but

11



what of the cases where a session exists?
The same experiment from above was repeated with a “warm” connection where a session was

already established. In this environment, we show that far from a negative performance impact, the
session layer delivers a significant performance improvement. Not only during Time To First Byte
connection establishment, but all the way through the millionth byte of data transferred. Avoiding
TCP slow start appears to provide substantial benefit that endures through the transfer.

While this benefit isn’t exclusive to fived and application protocols have re-designed themselves,
sometimes substantially, to employ similar tricks (HTTP 1.1 essentially provided persistent connec-
tions and HTTP 2.0 essentially provides multiplexing) the session architecture allows these perfor-
mance benefits to transparently apply to any protocol running on it. Instead of always imposing a
cost, it’s quite likely that the session layer can bring performance improvements and optimizations,
possibly even tailored to the specific network environment for each computer, without re-writing
every application which implements an application protocol.

5 Potential Improvements

5.1 Integration into the Kernel

Integrating some parts of the fived client into the kernel may provide considerable opportunities for
performance enhancements resulting from less context switching, less copying between buffers and
other clever opportunities that occur in kernelspace with full access to the kernel networking stack.
The fived server could be similarly accelerated, though it seems fair to say that while demultiplexing
might be suitable for inclusion into the kernel, a good portion of the logic in the fived server could
remain in userspace where it can be customized and easily changed.

5.2 Integration into Hardware

For larger networks and integration of fived into switches and routers, it makes sense to develop
specialized hardware. A considerable amount of the active work fived performs during most con-
nections is reading the multiplexing headers and simply forwarding traffic. This could be very
efficiently implemented in hardware.

Fortunately interacting with the fived server directly is a rare operation. It seems acceptable to
expect that the core routing and forwarding portion use hardware acceleration, while interacting
with the session layer (i.e. requesting new services) can be an exceptional operation handled outside
of hardware or even by a separate machine. This machine then handles the request using higher
level processing power and then hands down a new forwarding path for the accelerated multiplexer
and demultiplexer to use when there’s a new connection being established.

6 Deployment

Deployment needs to be a key concern with any new networking technology. The goal is to ensure
that no network or set of users find themselves unable to benefit from fived. With the design of
fived, an end-user can start gaining the benefits of a session layer if any of the following occur: 1)
Their operating system vendor incorporates it into the networking environment for the operating
system. 2) The network operator deploys session technology on their network. 3) The user runs any
application that natively uses fived ’s session layer. If any of these conditions apply, compatibility
toolsets will allow most users to gain some of the key protections and benefits of fived. In this
section, we talk about how fived can be successfully deployed in each of these three cases.

12



6.1 Deploying with Unmodified Applications

Naturally, today’s applications do not already support fived. However, using a shared library
preload unmodified applications can be retrofitted to use the session layer via a compatibility shim.
The shim could intercept calls made to the networking interface, including name resolutions, sets
up a session to the requested destination, and routes traffic through the session. These applications
would then be able to transparently take advantage of a user’s authentication credentials on a
session or any increased access level, session mobility and reconnection features or transparent
encryption services supported by the server. In addition, in the case that the application uses an
deprecated connection protocol, the shim could convert its API calls into a request to the session
initiator. This allows applications to use protocols that didn’t exist at the time the application was
written to reach services.

In the case of an unmodified server application, no changes are required since the interactions
servers have with the fived daemon appear no different than any other network connection. However,
a user who wishes to only expose a service through fived will have to reconfigure their server to
bind to a location on the machine only fived can access. The easiest way to do this is generally
to configure servers to bind themselves to localhost or a local socket. It should be noted though,
that users are free to expose services via fived session layer while still keeping them open to all
non-session layer users via traditional means.

With fived users are not forced to take an all or nothing approach, the migration to a session
layer can happen slowly. Private services that aren’t intended to be visible to the entire world
will generally be the easiest to migrate. Since many private services are offered by organizations
to people affiliated with them, it’s easier for these organizations to require people install a fived
client. For public-facing services, it will take time to get to a point where all users have migrated
and support for direct layer 4 connections can be disabled on legacy services.

6.2 Deploying with Unmodified Computers

Another compatibility option allows a network administrator to session-enable segments of their
network without waiting for each of the individual hosts to get their own native session support. In
this scheme, a DNS proxy (or similar technology) can point outgoing name resolutions to a session
server. This session server can initiate sessions to the hosts requested. This could allow for the
users on the network to access things they wouldn’t otherwise be able to reach in the case that the
network has an established authenticated session to some other organization, or it could merely
ensure traffic traverses a wide area network over an encrypted link. For mobile vehicles, like buses,
boats or airplanes, networks could also use the mobility features to maintain connections as the
vehicle roams between network points, possibly reconnecting from an IP in a completely different
Autonomous System.

A similar system could be built at the network segment perimeter without a cooperating DNS
server. If the session client is placed along the route for outbound traffic, it is free to examine
the destination of the packets coming from the unmodified host, open a session to that destination
and tunnel the traffic over the session layer. Whether or not DNS spoofing provides network
administrators and users with a more desirable solution is an open question.

7 Project Status

In this report we outline a more feature rich interface to the Internet. In the intervening 30 years
since the concept of a session layer was first proposed, we’ve seen an expansion in the diversity

13



of application needs on computer networks. We’ve seen in detail the plethora of mechanisms,
workarounds and ad-hoc solutions networks have implemented on top of transport protocols to
achieve these needs. Fived is an attempt to coalesce this set of needs in a unified and backwards
compatible interface.

The prototype tested in this report continues to be under development. The current codebase
is unoptimized and runs entirely in userspace on unmodified Linux kernels. This report outlines
the current status of our session layer design and contains preliminary data to support the project’s
feasibility.

8 Acknowledgements

This material is based upon work supported by the National Science Foundation under Grant No.
1018928. Any opinions, findings, and conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

14



Bibliography

[1] GNU Screen Project. [Online]. Available: http://www.gnu.org/software/screen/

[2] Linux PAM. [Online]. Available: http://www.kernel.org/pub/linux/libs/pam/

[3] M. Belshe and R. Peon, “draft-mbelshe-httpbis-spdy-00: SPDY protocol,” 2012.

[4] M. Belshe, M. Thomson, and R. Peon, “RFC 7540: Hypertext Transfer Protocol Version 2
(HTTP/2),” 2015.

[5] D. Bernstein. (2011) CurveCP: Usable security for the Internet. [Online]. Available:
http://curvecp.org/

[6] J. Chandrashekar, Z. Zhang, Z. Duan, and Y. Hou, “Service oriented internet,” Service-
Oriented Computing-ICSOC 2003, pp. 543–558.

[7] D. Chapman, E. Zwicky, and D. Russell, Building internet firewalls. O’Reilly & Associates,
Inc. Sebastopol, CA, USA, 1995.

[8] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson, M. Wawrzoniak, and M. Bowman,
“Planetlab: an overlay testbed for broad-coverage services,” ACM SIGCOMM Computer Com-
munication Review, vol. 33, no. 3, p. 12, 2003.

[9] T. Dierks and E. Rescorla, “RFC 5246: The transport layer security (TLS) protocol version
1.2,” Tech. Rep., 2008.

[10] Facebook Inc. Facebook Login. [Online]. Available: https://developers.facebook.com/
products/login/

[11] A. Freier, P. Karlton, and P. Kocher, “Secure Socket Layer 3.0,” IETF draft, November, 1996.

[12] B. Gleeson, A. Lin, J. Heinanen, G. Armitage, and A. Malis, “RFC 2764: A Framework for
IP Based Virtual Private Networks,” 2000.

[13] Google Inc. Google Sign-In for Websites. [Online]. Available: https://developers.google.com/
identity/sign-in/web/

[14] Internet Corporation for Assigned Names and Numbers. (2014) Remaining IPv4
Addresses to be Redistributed to Regional Internet Registries. [Online]. Available:
https://www.icann.org/news/announcement-2-2014-05-20-en

[15] R. Kwan, R. Arnott, R. Paterson, R. Trivisonno, and M. Kubota, “On mobility load balancing
for LTE systems,” in Vehicular Technology Conference, 1988, IEEE 38th, 2010, pp. 1–5.

15



[16] B. Laurie and P. Laurie, Apache: The definitive guide. ”O’Reilly Media, Inc.”, 2003.

[17] M. Lotter. (1988, November) RFC 1078: TCP Port Service Multiplexer (TCPMUX). [Online].
Available: http://www.rfc-editor.org/rfc/rfc1078.txt

[18] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford, S. Shenker,
and J. Turner, “OpenFlow: enabling innovation in campus networks,” ACM SIGCOMM Com-
puter Communication Review, vol. 38, no. 2, pp. 69–74, 2008.

[19] L. Peterson, T. Anderson, D. Blumenthal, D. Casey, D. Clark, D. Estrin, J. Evans, D. Ray-
chaudhuri, M. Reiter, J. Rexford et al., “GENI design principles,” IEEE Computer, vol. 39,
no. 9, pp. 102–105, 2006.

[20] W. M. Petullo, X. Zhang, J. A. Solworth, D. J. Bernstein, and T. Lange, “MinimaLT: minimal-
latency networking through better security,” in Proceedings of the 2013 ACM SIGSAC con-
ference on Computer & communications security. ACM, 2013, pp. 425–438.

[21] D. Recordon and B. Fitzpatrick, “OpenID Authentication 1.1,” Finalized OpenID Specification,
May, 2006.

[22] J. Saltzer, D. Reed, and D. Clark, “End-to-end arguments in system design,” ACM Transac-
tions on Computer Systems (TOCS), vol. 2, no. 4, p. 288, 1984.

[23] R. Srinivasan, “RFC 1833: Binding protocols for onc RPC version 2,” 1995.

[24] P. Staubach, B. Pawlowski, and B. Callaghan, “RFC 1813: NFS Version 3 Protocol Specifica-
tion,” 1995.

[25] The Chromium Project. QUIC, a multiplexed stream transport over UDP. [Online]. Available:
https://www.chromium.org/quic

[26] Twitter Inc. Sign in with Twitter. [Online]. Available: https://dev.twitter.com/web/sign-in

[27] W. Wong, “Stunnel: SSLing Internet Services Easily,” SANS Institute, November, 2001.

[28] T. Ylonen and C. Lonvick, “RFC 4254: The Secure Shell (SSH) Connection Protocol,” 2006.

16


