
Reducing Energy Consumption using a Non-Volatile storage cache

Timothy Bisson Scott A. Brandt
Computer Science Department

University of California, Santa Cruz
{tbisson,sbrandt}@cs.ucsc.edu

Abstract

We can outperform the most powerful disk spin-down
algorithm available by using a small non-volatile storage
write-only cache to temporarily store hard disk write re-
quests while a disk is spun-down. In our experiments, we
use a USB thumb drive device as our non-volatile storage
cache. By redirecting writes to a flash memory while a disk
is spun-down we avoid costly hard disk cycle start-stop op-
erations, thus increasing hard disk reliability and reducing
energy consumption.
We also show that such a storage cache is necessary

to provide feasible performance from a disk spin-down al-
gorithm in a general purpose operating environment. The
problem arises from typical general purpose operating sys-
tem applications generating periodic disk activity while a
system is not in use. By using small, cheap, and non-
volatile flash memory we can improve the energy savings
of a highly adaptive machine learning disk spin-down algo-
rithm by 36%, and the 15 and 45 second fixed-timeout al-
gorithm by 57% and 46%, respectively. We can also reduce
the relative fraction of hard disk ”contact start-stop cycles”
by 80% for the DSA algorithm, and with the 15 and 45 sec-
ond fixed-timeout algorithm 79% and 73%, respectively.

1. Introduction
One of the major problems in mobile computing is power

consumption. Simply put, mobile computers do not have an
unlimited supple of energy and their users are often forced
to temporarily abort computing when their battery supply
is exhausted. To reduce the energy consumption in mo-
bile computers, much research has been performed and tar-
geted at different subsystems for mobile computers such as
CPU [16], networking [15], and disk [8]. The hard disk is a
popular subsystem to attack because there are well-defined
power states for a disk which can be harnessed by a disk
spin-down algorithm to drastically reduce a system’s over-
all power consumption.

A spin-down algorithm generally falls into one of three
different categories: fixed timeout, adaptive, and predictive.
Fixed timeout spin-down algorithms maintain a constant
timeout value independent of the disk parameters. Adaptive
spin-down algorithms have a dynamic timeout value that
uses hysteresis and disk state power statistics to calculate
the timeout. Predictive spin-down algorithms also use disk
request hysteresis and power statistics, however, they use
hysteresis to determine when it is beneficial to spin-down
and do so following a disk request.
With little hysteresis and hard drive statistics adaptive

disk spin-down algorithms can provide significant improve-
ments over fixed time-outs. A new and powerful class of
adaptive disk spin-down algorithms use the share algorithm,
a machine learning class of algorithm [8]. This algorithm
uses multiple experts – each predicting a fixed timeout for
its overall dynamic timeout calculation. A dynamic weight
is associated with each expert and used to restrict its contri-
bution to the overall timeout calculation. A new timeout is
calculated after every idle period. An expert’s weight is re-
duced by considering its energy consumption relative to an
Oracle’s energy consumption policy.
We verified the correctness of the Multiple Ex-

perts Adaptive spin-down algorithm by implementing it in
the Linux kernel and running the algorithm on our own per-
sonal desktop machine [2]. After implementation, we
discovered three drawbacks that were not apparent in sim-
ulation: latency, sub-optimal performance, and reliabil-
ity.
We have developed a novel solution to directly address

spin-down algorithm reliability and sub-optimal spin-down
algorithm performance, and indirectly address spin-up la-
tency. We redirect the periodic write requests that occur
while a disk is spun-down to flash memory, which acts as a
write-only cache. Redirection occurs until the flash memory
becomes full, or the system becomes active (a read request
or many quick write requests). By performing this redirec-
tion, a disk can stay spun-down for hours at a time, depend-
ing on flash memory size, as opposed to seconds. A benefi-
cial consequence is that we reduce the number of spin up-

and-down operations a system must incur because the disk
need not be spun-up on idle system periodic writes. Energy
savings are substantially increased; Powering a disk drive in
stand-by mode requires significantly less power than keep-
ing it in standby mode for short time intervals, repeatedly
spinning it up, and keeping it in active power mode (while
waiting for the next timeout to be exceeded).
The rest of the paper is organized as follows: Section 2

motivates our work, Section 3 discusses our design, Sec-
tion 4 presents our preliminary results, Section 5 discusses
related work, and Section 6 concludes.

2. Motivation: Latency, Performance, and Re-
liability
Adaptive disk spin-down algorithms use a hard disk’s

power requirements in different power states to help calcu-
late timeout values. Today’s hard disks generally consume
5-10 times more energy in active than standby mode [19].
As a result, spin-down algorithms become very aggressive
as it most efficient to spin-down after only a few seconds
of idle time. Unfortunately, spin-up latency becomes an is-
sue with such timeout values. Spin-up latency is the time
it takes to completely spin-up a disk after it has been in
standby-mode. Typical latency times for modern hard disks
are in the low seconds. With such short timeout values and
long spin-up latency, it is easy to imagine system usage pat-
terns in which a user consistently must endure spin-up la-
tency. A quick example is a user editing a document. The
hard disk spins down while the user is editing the document,
but whenever the user saves their document, they must wait
several seconds for the disk to spin-up and service their ap-
plication’s requests. This is clearly unacceptable.
Operating systems incur periodic writes during idle peri-

ods when there is no user activity. Applications, such as sys-
tem loggers, web browsers, and e-mail clients are responsi-
ble as well has system daemons. Figure 1 shows the system
activity on a graduate student’s personal desktop Linux box
for a 24-hour period running a typical Linux file system,
Reiser V3, no unnecessary daemons, and mounted with the
”no atime” option. In this figure we see that even during
periods of non-user activity there are still at least 4 writes
per minute. Actually, the writes occur in bursts roughly ev-
ery 40 seconds. This is due to the parameters specified by
pdflush, a kernel daemon in the Linux kernel that controls
when dirty buffers are flushed to disk. Thus the problem is
that we lose a large percentage of the potential disk spin-
down energy saving because our hard disk is periodically
spun-up and down every few seconds even when no user-
activity is present.
With idle times less than a minute (and no user activ-

ity), the number of hard disk ”contact start-stop cycles” in-
crease dramatically. A ”contact start-stop cycle” is the com-
pletion of enabling the spindle motor and moving the disk

 1

 10

 100

 1000

 10000

 0 5 10 15 20

re
qu

es
ts

Time (H)

requests per minute

Figure 1: Trace Log (Requests per Minute)

head from its parked position to activating the spindle mo-
tor and head, and back to parking the head and disabling the
spindle motor. In one hour of non-user activity, roughly 60
contact start-stop cycles occur. Desktop hard disks are rated
for 10s of thousands of contact start-stop cycles [13, 17, 6].
Therefore, using an aggressive disk spin-down algorithm
will result in exceeding the maximum contact start-stop cy-
cles in a matter of days. Exceeding the maximum contact
start-stop cycles may result in disk failure, which at best is
inconvenient and at worst a disaster.

3. Design
We detail the design of redirecting writes from a hard

disk to a small amount of flash memory while a disk is spun-
down. We present our design in the context of the Linux
Kernel.

3.1. Indexing flash data blocks sectors
We first describe how redirected data blocks are stored

in flash memory. Blocks in flash memory are logically split
into data-blocks and meta-blocks. Data-blocks hold actual
data while meta-blocks hold the sector index values for data
blocks. The sector index values stored in the meta-blocks
are for the hard disk location not the flash sector location.
Direct indexing is used for associating sector indexes with
data blocks. For example, sector index 32 in the 10th log-
ical block of flash memory (a ”meta-block”) is associated
with the data-block stored in flash memory at logical block
5152 and the value from the meta-block sector index is the
data block’s sector location on disk. Figure 2 shows the flash
block layout of meta and data blocks.
Since flash memory is nonvolatile, we store sector in-

dexes in the meta blocks to guarantee consistency in the
case of system failure during redirection.

2

Figure 2: Flash block layout

Data blocks are 4KB and can hold 512 8-byte sector ad-
dress per 4KB block. Therefore, each 2MBs of flash storage
requires only 1 meta-block. Figure 5a shows that we reach
maximum energy reduction at 128-MB. Using a 128MB of
flash memory (32768 blocks), 4 ”meta-blocks” (16KB) are
needed.

3.2. Redirecting write requests
When a disk is spun-down due to a time-out being ex-

ceeded, a global flag (spun down) is set to TRUE. When the
disk is spun back up, spun down is reset to FALSE. A kernel
daemon, disk daemon, is used to calculate the current time-
out, spin down the disk, and set the spun down flag back to
TRUE when the timeout it is exceeded. Spun down is re-
set to FALSE and requests are no longer redirected to flash
memory when the block driver function make request()
is called to send a request to the disk driver. While the
spun down flag is set to TRUE, all write requests are redi-
rected to flash.
In order to redirect a write request we record the request

size and starting sector. We use these parameters to gener-
ate two redirection requests for each hard disk request: one
meta-block sector request and one data-block request. The
meta-block request appends the new sector indexes associ-
ated with the data-block requests to the current meta-block.
We keep a memory map of the sector indexes for the cur-
rent meta-block we are writing and simply append the new
sector indexes to this 4KB map and generate a write request
for it. This avoids having to read the meta-block into mem-
ory, append our sector index entries to it, and write the block
back to flash memory. When all 512 sector indexes for the
current meta-block are used, we generate a write request for
the current meta-block one last time, zero it’s memory map
and increment the logical block number of the current meta-
block our memory buffer maps to.
The data block request is the actual write request gener-

ated for hard disk but redirected. Write requests are written
sequentially to Flash. The sector location where the write is

destined for is calculated with the following function:
sector = MetaBlocks+CurrentMetaBlock∗Current-
MetaBlockIndex

3.3. Flushing data blocks
Figure 3 shows that capacity and user-activity will cause

the system to halt redirection and spin-up the disk. Capac-
ity occurs when the flash memory becomes full. We flush
the flash memory data blocks to the appropriate sectors
on the hard disk. Additionally, when a user begins using
the system, we stop redirection. A read request or many
write-requests mark user-activity. We use ”current write re-
quest” (cwr) to denote the write request threshold. While
the disk is spun-down, if the number of consecutive write
requests exceeds cwr while idle time< timeout, the system
is deemed active and all data blocks on the USB storage de-
vice are flushed to disk.
We denote user-activity as a case to stop redirection be-

cause the aim of our functionality is to reduce spin-ups due
to periodic application writes while the system is not be-
ing used by a real user. In the next section we present the
results for different values of write-request thresholds. We
show that a real and significant trade-off exists between how
much to redirect and the time to flush flash memory data
blocks to disk.
When we stop redirecting, we flush all blocks in the flash

memory to the hard disk to maintain consistency between
the hard disk and flash memory. We choose this design for
its simplicity and minimal impact to the Linux IDE device
driver. Alternative designs exist, such as lazily flushing the
flash buffers or flushing buffers at specific rates. Such de-
signs add a significant amount complexity and it isn’t clear
whether the added complexity justified.
To flush the data-blocks to disk, we repeat the process of

reading a meta-block into memory, reading the correspond-
ing data-blocks into memory, then writing those buffers to
disk, and finally invalidating the meta-block descriptors and
writing it to flash. This process is repeated until a meta-
block does not contain all valid data blocks or the last meta-
block was read. To determine which data blocks have valid
buffers for a particular meta-block, we do a sequential scan
of the data block descriptors after the meta-block is read
into memory. If a descriptor contains a non-valid identifier,
the scan is stopped and the current index is noted so it is
known how many data blocks to read in and write to disk.
Since we invalidate the meta-block descriptors after read-
ing them in during the flushing process, we know which
data blocks will have valid meta-block descriptors. Note
that we can read the blocks back into memory from flash
with a few large requests because the data blocks are lo-
cated sequentially on flash in logical sector order. Assum-
ing the first meta-block, contains 512 valid entries, the 0th
- 511th data-block would be read into memory. As a result,

3

Figure 3: Diagram of redirecting disk requests

we can potentially read into memory at most 2MB of data
at a time.

4. Preliminary results
To verify the performance of redirecting writes during

periods of spin-down, we traced the disk activity on a desk-
top machine and executed our algorithm against the gener-
ated traces. We examine the energy consumption and num-
ber of spin-ups used by adding redirection to a spin-down
algorithm, and we benchmark the cost of synchronizing a
hard disk to USB by reading X data blocks into memory
from USB and then writing them to the hard disk. Note, we
use a USB thumb drive to test our hypothesis, but envision a
small amount flash memory embedded on the disk or moth-
erboard.

4.1. Trace Generation
We traced the disk access on desktop system for 24

hours. The system runs Linux 2.6.9, uses Reiser V3 as the
root file system mounted with no atime option, and has
syslog-ng as the system logger. The system has a 3.2 P4
HT processor with 1GB of memory. The system is used
by a graduate student that uses the system for program-
ming (mostly Linux kernel development), listening to music
streams, reading e-mail, web-browsing, and text process-
ing. The system also has a nightly cron job to update all
packages on the system every morning at 1AM. Package
updating is source-based, so depending on the type pack-
ages needing to be updated, the update process may take 5
minutes to a few hours.
Trace entries were recorded to an in-kernel trace struc-

ture that held 8KB of trace entries. We add an entry to
the trace memory buffer when the IDE disk driver func-
tion ide do rw() is called. When all entries are filled up, the

memory structure is passed to a user-space process, which
then sends the trace data (via sockets) to another desktop
system. Doing so, avoids logging trace buffers on the same
disk we are tracing, thus skewing the results. The format of
a trace entry is:

struct trace_entry{
unsigned long long time;
int rw;
unsigned long long sector;
int size;

};

4.2. Preliminary Results

We benchmark the cost of reading different sizes of USB
into memory, then copying flushing those memory buffers
to disk to get a general idea of the timeline for flushing data
blocks fromUSB to hard disk. Our experiment uses a 64MB
USB thumb drive from Dell. Figure 4 shows the results of
our experiment. In this figure, Read USB is the time it takes
to read the data blocks from the USB storage device into
memory. Write Disk is the time it takes to write the mem-
ory buffers to disk. For USB disk sizes 8K to 512K, it takes
less than a second to synchronize the hard disk with the
USB data blocks. Above 512K, the time to synchronize the
two devices increases linearly, and reading the USB data
blocks into memory contributes most to the overhead.
The intent of this work is to show that we can drasti-

cally reduce energy consumption as well as increase relia-
bility by redirecting writes for a spun-down disk that suf-
fers from periodic idle-time writes. In Figure 5 we show the
relative benefit of adding redirection to both the DSA al-
gorithm and several fixed-timeout values. The DSA algo-
rithm is the adaptive disk spin-down algorithm developed

4

by Helmbold et al. [8]. Figures 5(a) and 5(c) show the re-
sults for our experiments using the DSA algorithm. In both
figures cwr represents the activity threshold tunable we de-
scribed in section 3.3. Figure 5(a) shows the percentage of
energy used when adding a temporary USB cache to the
DSA algorithm. As the smallest request size is 4KB, the
smallest USB cache size we use is 8KB. For cache sizes
8 and 16k, we actually increase the amount of energy we
use by about .1%. This happens because we can only redi-
rect for 1-2 4KB writes, respectively, and although USB en-
ergy consumption is substantially less than disk, in these
two cases, keeping a disk spun-down for an extra 1-2 redi-
rect writes does not offset powering the USB device to store
those data blocks.
The maximum energy savings occur roughly between 1

and 10MB, with cwr activity threshold values of 25 and
150, respectively. With cwr at 25, we can save up to 36%
energy, and with cwr at 150, we can save up to 46% en-
ergy. The cwr value shouldn’t just be set at 150 because as
we mentioned before, the more data we redirect the longer
it takes to synchronize the disk with the USB data blocks as
we saw in figure 4.
We also measure the fraction of contact start-stop cycles

that occur, as a result of adding redirection to the DSA al-
gorithm in figure 5(c). With roughly 10MB of USB cache,
we can reduce the number of spin-ups by 60-80%, depend-
ing on the cwr parameter. The cwr parameter has a big-
ger impact on the number of spin-ups than energy savings.
As cwr increases, more write requests are served to the
USB thumb drives. This results larger flushes when redi-
rection stops, but less frequently (less contact start-stop cy-
cles). The downside is that the longer synchronize times are
incurred.
In both graphs, between 8k and 256K, the plots for dif-

ferent cwr values are almost identical, and then the points
drift to different limits with different cwr values for larger
USB storage device sizes. This occurs because below 512K,
the limiting factor for the number spin-ups or energy con-
sumption is the USB device size, not the cwr parameter.
With smaller cwr values, the plots values would be differ-
ent for small USB device sizes.
In 5(b) and 5(d) we show the relative benefit of using

redirection with a fixed timeout disk spin-down algorithm
using timeout values of 15s, 30s, and 45s. We don’t include
60s because to idle periods exist for that long and thus the
result would be the same as never spinning down. In this set
of graphs we used cwr set at 100 so that we can focus on
the different timeout values.
We see that 5(a) and 5(b) have similar plots, however

we see that in (b), the curve is significantly steeper between
100k and 1M. The reason for the strong disparity between
the DSA with redirect and the fixed timeout with redirect
is that DSA is already a fairly optimal algorithm at reduc-

USB Storage Size(KB)
8 16 32 64 128 256 512 1024 2048 4096 8192 1638432768

Ti
m

e(
S)

0

5

10

15

20

25

30

35

40

45

Read USB
Write Disk

Figure 4: Benchmark: synchronizing hard-disk to
USB (USB 100% full)

ing energy consumption while the fixed timeout algorithm
is not. Therefore, by redirecting writes we are able to offset
the sub-optimality of the fixed-timeout algorithm through
redirection, which is why we see the steep curve in (b).
In figure 5(d), fixed-timeout 30s and fixed-timeout

45s are nearly identical. However, they actually dif-
fer by roughly 1% at the larger storage cache sizes.
We see that the fixed-timeout 15s plot is more sim-
ilar to that of the DSA algorithm in (c). We believe
this is because the 15s timeout algorithm begins to ap-
proach many of the timeout values for the DSA algo-
rithm, thus the curve near the 16-64k are more similar
than the fixed timeout values of 30s and 45s. Addi-
tionally, we see that the maximum relative reduction in
”contact start-stop cycles” is that both (c) and (d) have sim-
ilar values near the large size of flash storage cache
sizes.

5. Related work
It is well known that using a cache above disk is an effec-

tive way of increasing performance. A popular application
of this concept is with Distributed file systems. Baker et al.
looked at using NVRAM as a file cache to reduce write traf-
fic to file server, and NVRAM as write buffers to reduce file
disk servers [1, 3, 12].
Similar to our own work, Marsh et al. developed a

”FlashCache” which is a read-write non-volatile buffer
cache that exists between disk and memory [11]. They
show that by using such a cache, energy savings are sig-
nificant. In this work, FlashCache buffers writes and
services reads even while the disk is active, to reduce la-
tency. Our design focuses on maximizing energy reduc-
tion. Therefore, we use a write cache and buffer only
writes while the disk is spun-down so that spin-down in-
tervals are maximized. In Marsh’s design, FlashCache
buffers may be filled while the disk is active, thus reduc-

5

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1 10 100 1000 10000 100000

En
er

gy
 u

se

size of Storage (1K)

cwr:25
50
75

100
125
150

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1 10 100 1000 10000 100000

En
er

gy
 u

se

size of Storage (1K)

fixed-15s
fixed-30s
fixed-45s

(a) % energy using DSA w/ redirect (b) % energy using a fixed timeout w/ redirect

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000 100000

Sp
in

-u
ps

USB Storage Size (1K)

cwr:25
50
75

100
125
150

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000 100000

Sp
in

-u
ps

size of Storage (1K)

fixed-15s
fixed-30s
fixed-45s

(c) % CSS cycles w/ DSA and redirect (d) % CSS cycles w/ fixed timeout and redirect
Figure 5: Performance: Graphs show benefit of using redirect with DSA algorithm in the context of en-
ergy consumption and number start-stop operation cwr is the number of writes we allow when idle time
< timeout before we deem the system active and execute flush usb().
ing the number of available buffers when spun-down. Ad-
ditionally, in FlashCache the metadata needed to map
logical blocks between the FlashCache and disk is not dis-
cussed, nor how consistency is maintained when serv-
ing read requests when the requested data lives on both the
FlashCache and disk.
A new application of using NVRAM in a storage hier-

archy is to tier multiple disks vertically with NVRAM at
the highest caching level [9]. A second disk exists between
primary storage and NVRAM, which serves as a cache-
disk. When, the cache-disk is idle, which occurs when it
has finished copying its buffers to primary storage, buffers
NVRAM are copied to the cache-disk.
Douglis et al. looked at storage solutions for storage in

Mobile computing [4]. They primarily investigate the trade-
offs using flash memory and hard disks for primary storage.
Additionally, they look at using SRAM and DRAM to func-
tion as a buffer cache. They found that flash memory can
provide significant energy conservation while providing de-
cent I/O performance. However, flash memory performance
is not uniform.
There are several adaptive disk spin-down algorithms

that achieve within 10% of the the optimal energy consump-
tion [5, 8, 14, 7]. Our work is complementary to any disk

spin-down algorithm including fixed timeout algorithms.
Our goal is to enhance the performance of disk spin-down
algorithms by increasing the available time a disk can be
spun-down by buffering writes during periods of idle time.
LaRosa and Bailey attempt to provide a new approach to

reduce energy consumption of mobile devices such as lap-
tops. Their approach is to use nonvolatile memory to re-
duce energy consumption during mobile use by perfecting
likely to be used files to a nonvolatile cache during plugged-
in mode. When the laptop enters mobile-mode the hard disk
is spun-down and files are accessed from the nonvolatile
memory cache [10]. h
Cooperative I/O introduces the concept of processing all

pending dirty-memory before a disk should be shut-down
to maximize the time spent spun-down [18]. This approach
will help reduce energy consumption in our work as well,
since this concept will reduce the number of blocks that per-
sist in flash memory.

6. Conclusion and future work
In this work we have shown that using a small amount

of flash memory as a temporary write cache in conjunc-
tion with a disk spin-down algorithm we can reduce the
the energy consumed by 36% over the Dynamic Spin-down

6

Algorithm developed by Helmbold and others. We exploit
fixed timeout based algorithm by reducing the consumed
energy by 46-57%. We can reduce the relative fraction of
contact start-stop cycles by up to 80% for the DSA algo-
rithm and 79%, 73%, and 74% for fixed-timeout values of
15, 30, and 45 seconds, respectively. For mobile comput-
ing systems this provides a significant enhancement to disk
spin-down algorithms by making them not only feasible, but
practical.
In our experiments we have discovered there is a sig-

nificant tradeoff between the amount of data to be redi-
rected and the time to flush that data from flash memory to
hard disk. With flash memory currently available in MBs, it
takes seconds to flush the data blocks, with time increasing
linearly proportional to redirection size. Fortunately, we’ve
shown only a fewmegabytes of memory is necessary to reap
the benefits of using a write-only cache in flash for redirec-
tion.
Flash memory is the appropriate hardware solution for

this problem. It requires significantly less power than disk.
It is inexpensive in the amounts we require (a few MBs for
a few dollars), and it is non-volatile so that data persists
across crashes.
We are currently investigating alternative designs includ-

ing, but not limited to, redirecting writes for more than one
disk and alternative flushing techniques.

References

[1] Mary Baker, Satoshi Asami, Etienne Deprit, John Ouster-
hout, and Margo Seltzer. Non-volatile memory for fast,
reliable file systems. In Proceedings of the 5th Interna-
tional Conference on Architectural Support for Program-
ming Languages and Operating System (ASPLOS), pages
10–22, 1992.

[2] Timothy Bisson and Scott A. Brandt. Adaptive disk spin-
down algorithms in practice. In 3rd USENIX Conference on
File and Storage Technologies, (Work in Progress Proceed-
ings), 2004.

[3] Peter M. Chen, Wee Teck Ng, Subhachandra Chandra,
Christopher Aycock, Gurushankar Rajamani, and David
Lowell. The rio file cache: Surviving operating system
crashes. In Architectural Support for Programming Lan-
guages and Operating Systems, pages 74–83, 1996.

[4] Fred Douglis, Ramon Caceres, M. Frans Kaashoek, Kai Li,
Brian Marsh, and Joshua A. Tauber. Storage alternatives for
mobile computers. In Operating Systems Design and Imple-
mentation, pages 25–37, 1994.

[5] Fred Douglis, Padmanabhan Krishnan, and Brian Bershad.
Adaptive disk spin-down policies for mobile computers.
In Proc. 2nd USENIX Symp. on Mobile and Location-
Independent Computing, pages 130–142, 1996.

[6] IBM Hard Disk Drives.
http://www.pc.ibm.com/ww/hdd/hddredirect.html. IBM
hard drive specifications.

[7] Y.Lu G. De Micheli. Adaptive hard disk power management
on personal computers. In IEEE Greate Lakes Symposium
on VLSI, pages 50–53, Mar 1999.

[8] David P. Helmbold, Darrell D. E. Long, and Bruce Sherrod.
A dynamic disk spin-down technique for mobile computing.
In Proceedings of the 2nd annual international conference
on Mobile computing and networking, pages 130–142, 1996.

[9] Yiming Hu and Qing Yang. Dcd
disk caching disk: a new approach for boosting i/o perfor-
mance. In Proceedings of the 23rd annual international
symposium on Computer architecture, pages 169–178. ACM
Press, 1996.

[10] Christopher R. LaRosa andMarkW. Bailey. A docked-aware
storage architecture for mobile computing. In Proceedings
of the first conference on computing frontiers on Computing
frontiers, pages 255–262, 2004.

[11] B. Marsh, F. Douglis, and P. Krishnan. Flash memory file
caching for mobile computers. In To appare in Proceedings
of the 27th Hawaii Conference on Systems Science, 1994.

[12] Ethan L. Miller, Scott A. Brandt, and Darrell D. E. Long.
Hermes: High-performance reliable mram-enabled storage.
In Proceedings of the Eighth Workshop on Hot Topics in Op-
erating Systems, page 95. IEEE Computer Society, 2001.

[13] Western Digital Desktop Hard Drives Overview.
http://www.wdc.com/en/products/index.asp?cat=3. West-
ern Digital hard drive specifications.

[14] J.S. Vitter P. Krishnam, P.M. Long. Adaptive disk spin-down
via optimal rent-to-buy in probabilistic environments. In
Proceedings of the 12th annual Internation Conference on
Machine Learning, pages 322–330, Jul 1995.

[15] Christian Poellabauer and Karsten Schwan. Energy-aware
traffic shaping for wireless real-time applications. In Pro-
ceedings of the 10th Real-Time and Embedded Technology
and Applications Symposium (RTAS), pages 48–55, May
2004.

[16] Johan Pouwelse, Koen Langendoen, and Henk Sips. Dy-
namic voltage scaling on a low-power microprocessor. In
MobiCom ’01: Proceedings of the 7th annual international
conference on Mobile computing and networking, pages
251–259. ACM Press, 2001.

[17] Seagate Disk Drive Technology.
http://www.seagate.com/products/discselect/. Seagate
hard drive specifications.

[18] Andreas Weissel, Bjoern Beutel, and Frank Bellosa. Coop-
erative i/o: a novel i/o semantics for energy-aware applica-
tions. SIGOPS Oper. Syst. Rev., pages 117–129, 2002.

[19] J. Zedlewski, S. Sobti, N. Garg, F. Zheng, A. Krishnamurthy,
and R. Wang. Modeling hard-disk power consumption,
March 2003.

7

