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Abstract—Benchmarks are widely used to perform apples-to-
apples comparison in a controlled and reliable fashion. Bench-
marks must model real world workload behavior. In recent
years, to meet web scale demands, Key-Value (KV) stores have
emerged as a vital component of cloud serving systems. The
Yahoo! Cloud Serving Benchmark (YCSB) has emerged as the
standard benchmark for evaluating key-value systems, and has
been preferred by both the industry and academia. Though YCSB
provides a variety of options to generate realistic workloads, like
most benchmarks it has ignored the temporal characteristics
of generated workloads. YCSB’s constant-rate request arrival
process is unrealistic and fails to capture the real world arrival
patterns.

Existing workload studies on disk, filesystem, key-value sys-
tem, network, and web traffic all show that they all exhibit some
common temporal properties such as burstiness, self similarity,
long range dependence, and diurnal activity. In this work, we
show that the commonly observed traffic patterns can be modeled
using the three categories of arrival processes: a)Poisson, b)Self
similar, and c)Envelope-guided process. The three categories pre-
sented are a necessary and sufficient set of request arrival models
that all storage benchmarks should provide. To demonstrate the
ease of incorporating the models in benchmarks, we have modified
YCSB to generate workloads based on all three models, and
show the effect of realistic request arrivals through an example
database evaluation.

I. INTRODUCTION

Many systems designed to solve real-world problems prove
the worth of their solution through an evaluation framework
that replays real-world workload traces. Though a good ap-
proach, such traces are not abundant and the ones that are
available may not always be applicable. In such situations,
benchmarks are used in the evaluation of different designs with
the same goals, not just in academic research, but also in real
world product promotions. Hence, standard benchmarks have
to be representative of real world needs, modeled based on
observed real-world workloads. Even though the workload’s
temporal characteristics are a big influencer on the system
behavior, it has been mostly ignored by benchmarks.

Key-value stores have become a vital component of cloud
computing applications and high performance web scale
databases. The key-value interface, being a simple and versatile
interface, is applicable to both the large distributed stores and
the individual storage nodes that make up the large distributed
stores. Being a device agnostic interface, it is suitable for all
the different kinds of devices in the storage hierarchy, and
as such serves as a unified model for all the layers in the

hierarchy. Building distributed key-value stores that meet web
scale demands and scale as demand rises is an active research
area.

Though many works exist on building better key-value
systems, a trace based evaluation is out of reach, as, to the
best of our knowledge, no key-value workload trace is publicly
available. The only published key-value workload study is
that of an in-memory key-value caching layer, Facebook’s
Memcached deployment [1], and even if obtained will be
unsuitable to evaluate individual key-value storage nodes, such
as the Kinetic [2] disks, the ethernet key-value disks from
Seagate.

In recent years, the Yahoo! Cloud Serving Bench-
mark (YCSB) [3] has emerged as the standard benchmark of
choice for evaluating key-value systems. YCSB has been used
both in the evaluation of large distributed key value stores [4],
[5], and individual key-value storage nodes [6]. YCSB has
also been used to generate representative data serving scale-out
workload in the evaluation of modern processor limitations [7].
YCSB comes with a workload generator that is flexible in
the selection of different mixes of operations and data sizes,
and key selections based on different distributions. But its
framework does not come with the flexibility to generate
realistic request arrivals.

YCSB’s constant-rate request arrival process is unrealistic
and fails to capture real world arrival patterns. Even then,
YCSB has been used in the evaluation of an elasticity con-
troller for cloud-based elastic key-value stores designed to
automatically respond to changes in workload [8], by simply
adding and removing YCSB clients that generate request at a
constant rate. Other systems that use YCSB for evaluation in a
similar manner include a system for achieving datacenter-wide
per-tenant performance isolation and fairness [9], and systems
performing live database migration to tolerate load variations
in multi-tenant databases [10], [11].

Storage devices have background tasks, such as scrubbing,
cache de-staging, data migration across tiers and automatic
backups, that need to co-exist with foreground request pro-
cessing. Modern storage media, such as NAND Flash and
Shingled Magnetic Recording disks, require log-structured data
management approaches to overcome the media’s inability to
update data in-place. Such devices also come with background
compaction (garbage collection and reorganization) processes
that oftentimes interfere with incoming media access requests.
Different designs handle the additional overhead in different
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ways, and are in need of an evaluation framework that does
not bombard the system with requests continuously, but rather
generates realistic arrivals with periods of both low and high
activity.

Workload studies that analyze traces collected from real
systems aid in realistic synthetic workload generation. The
only published key-value workload study, the one on Face-
book’s in-memory key-value caching layer [1], notes that the
observed workloads are bursty, and diurnal with traffic spikes.
The observed temporal patterns do not come as a surprise, as
existing studies show that disk, filesystem, network, and web
traffic all exhibit some common temporal properties such as
burstiness, self similarity, long range dependence, and diurnal
activity.

We classify typically observed temporal patterns into three
kinds of arrival processes: a)Poisson, b)Self similar, and
c)Envelope-guided processes. We have implemented inter-
arrival time generation based on all three temporal models, and
extended YCSB’s framework to enable a workload executor
that sends requests based on them. We evaluate the generated
requests and show that the statistical properties of the gener-
ated requests conform to that of the arrival process selected.
Further, to demonstrate the usefulness of realistic arrivals, we
use the modified code to evaluate a modern embeddable key-
value store, LevelDB [12], and show the variations in observed
latencies, both as a histogram and on a timeline. The high
latencies could be attributed to periodic background activity
in LevelDB that strives to garbage collect and reorder the key-
value pairs stored in the system, and could be brought down via
scheduling the activities during downtime. Our work could be
used to generate realistic downtime to evaluate such schemes.

II. RELATED WORK

Some simulation systems extract request inter-arrival time
distributions from real-world systems or traces, and mimic
the arrival pattern in the simulated traffic by sampling the
inter arrivals from the configurable distribution parameter [13],
[14], [15]. In TPC-W, a widely used traditional client-server
benchmark, user arrivals are defined by a Poisson process.
To rectify its lack of ability to produce burstiness, Mi et al.
[16] injected burstiness into it, using a Markov-modulated
process, based on the popular ON/OFF traffic models used
in networking to create correlated inter-arrival times.

One of the methods we use to generate realistic arrivals, the
b-model, a simple model to generate self similar, bursty traffic
for a wide range of time scales, was first used by Wang et al. to
generate self similar disk IO traces [17]. Hong and Madhyastha
argued that there was no need to model self similarity at large
time scales in disk traffic, as it is irrelevant for measuring disk
response times and queuing behavior, and used the b-model to
generate synthetic arrivals at short time scales [18]. But as we
discussed earlier, realistic arrivals can be useful in evaluating
many system functionalities that span across all storage media
at different time scales, and it is important that benchmarks
recognize the importance of the temporal characteristics of
generated workloads.

YCSB++ [19] extended YCSB with a set of additional
features that can be used in database advanced functionality
performance testing and debugging, but does not address the

lack of arrival variability. Features provided by YCSB++ and
our work could be complementary to each other.

III. REQUEST INTER-ARRIVAL TIMES PROCESS MODELS

Request arrival process is a stochastic process, and most
of the time it is strongly correlated to itself. Autocorrelation
is the cross-correlation of a time series with itself, and is a
measure of whether a workload is correlated to itself or not.
The autocorrelation function (ACF) can be used to measure
the similarity between the original arrival time series and the
same time series shifted by some time delay, as a function
of the time lag between them [20]. In other words, the ACF
shows whether the request interarrivals at any point of time is
dependent on it’s previous values, or is independent. The ACF
of a stochastic process X = (X1, X2, X3, ..) with mean µ and
variance σ2 at lag k is given by

r(k) =

1
n−k

n−k∑
i=1

(Xi − µ)(Xi+k − µ)

σ2

The above function is normalized and would result in
values between [−1, 1]. When lag is 0, the series is compared
to itself unmodified and the ACF will have the highest value
1. Positive ACF values mean that the random variable has a
high probability to be followed by another variable of the same
order of magnitude, while negative ACF implies the inverse.

Real requests do not arrive at a constant rate with a fixed
time interval between them. It is important for a benchmark’s
workload generator to offer a variety of choices, that are both
realistic and configurable, to match the workload a user has in
mind. In this section, we categorize the request arrival process
into three categories: a)Poisson, b)Self similar, and c)Envelope-
guided, and argue based on evidence from existing web, disk,
file and network IO studies that the categories presented are
both necessary and sufficient to represent the real world needs.

1) Poisson Process: A poisson process is a simple and
widely used stochastic process for modeling arrival times.
Requests can be modeled as a poisson process if the request
inter-arrival times are truly independent and exponentially
distributed. The ACF of a poisson process is usually low
and close to zero even at lag 1. Unless the inter arrivals are
truly uncorrelated, the poisson process is an unsuitable choice.
Research shows that most arrivals are correlated, and cannot
be modeled accurately by a poisson process [21]. Nevertheless,
when many different kinds of independent workloads are run
on a system, the resulting traffic could look like a poisson
process.

Cao et.al. [22] studied the internet traffic and found that as
the rate of new TCP connections increases, arrival processes
(packet and connection) tend locally toward Poisson, and that
time series variables (packet sizes, transferred file sizes, and
connection round-trip times) tend locally toward independent.
They concluded that the cause of the nonstationarity is su-
perposition: the intermingling of sequences of connections be-
tween different source-destination pairs, and the intermingling
of sequences of packets from different connections. Similar
behavior can be expected in web scale cloud scale key-value
workloads too. Hence, we have chosen the poisson process as
out first category.



2) Self Similar Process: Self similarity means the series
looks similar to itself at different time scales. Self similar
workloads typically include bursts of increased activity, and
similar looking bursts appear at many different time scales. A
poisson process too looks bursty at smaller time scales, as other
processes following a long-tailed distribution do. But when
aggregated and viewed at higher time scales, gets smoothened,
whereas aggregating streams of self similar traffic typically
intensifies the self similarity instead of smoothing it. Long
range dependence means the series is correlated to not just
its immediate past, but also its distant past. So, the ACF of
a long range dependent process decays slowly. Self similarity
and long range dependence, though separate phenomenons, are
typically observed together.

Many real life observed workloads are both self similar
and long range dependent. Self similarity has been observed
in WWW traffic [23], Ethernet local area network (LAN)
traffic [24], file-system traffic [25] and also in disk-level I/O
traffic [26], [27]. Further, researchers investigated a number
of wide-area TCP arrival processes [21], and concluded that
even if the finite arrival process derived from a particular
packet trace does not appear self similar, if it exhibits large-
scale correlations suggestive of long-range dependence then
that process is almost certainly better approximated using a
self similar process than using a Poisson process. Hence, we
believe benchmarks should also provide the facility to model
request arrivals based on a self-similar process.

Hurst parameter, H, is the exponent that describes the
cumulative expected deviation from the mean after n steps
in a random walk [20]. Higher values of H are the result
of stronger long-range dependence. The Hurst parameter is
often used to quantitatively measure the self similarity of a
time series. H is equal to 0.5 for a Poisson process, and is
in the range 0.5-1 for a self similar process. A variety of
methods exists to estimate the value of H of a time series,
and for a thorough description of the most popular methods
we recommend referring to Feitelson’s book on workload
modeling [20]. We use Selfis [28] to compute the Hurst
parameter of the generated inter-arrivals using five different
estimation methods.

Feitelson also describes in detail a variety of methods
to model self-similarity [20]. In our work, we generate self-
similar traffic using the b-model, a simple model to generate
self similar, bursty traffic for a wide range of time scales [17].
The model requires a single characteristic parameter, bias b.
The idea is to split the entire amount of work recursively into
two portions in a proportion determined by the bias b, similar
to Figure 1. Thus, the total number of operations N is divided
into bN and (1−b)N , and whether the first half of the divided
time-period receives bN operations or (1− b)N operations is
determined randomly. Such recursive work division generates
self similar traffic with high local irregularity, where b closer
to 1 generates traffic with high irregularity and b = 0.5 results
in uniform traffic.

3) Envelope-Guided Process: Gribble et al. showed that
high-level file system events exhibit self similar behavior,
but only for short-term time scales of approximately under a
day [25]. By examining long-term file system trace data, they
showed that high variability and self similar behavior does
not persist across time scales of days, weeks and months, and
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Fig. 1. Multiplicative cascading generation of b-model.

concluded that the file system traffic is well represented by a
self similar process for short time scales, but is unsuitable for
long time scales.

At longer time scales, many workloads exhibit a clear di-
urnal pattern [25], [1]. Karagiannis et al. show that periodicity
can obscure the analysis of a signal giving partial evidence of
long-range dependence [29]. Also, Akgul et al. showed that
periodicity-based anomalies affect Hurst parameter estimation,
causing unreliable H estimates, and if periodic anomalies exist
they should be removed before estimation [30]. The presence
of periodicity could have led to the conclusion by Gribble et al.
that a self similar process is unsuitable for long time scales.

If the traffic is periodic and exhibits a pattern such as a
daily/weekly activity cycle, then the ACF plot of the arrival
process does not decay slowly as it does for a self similar
process. Instead, the ACF oscillates between positive and
negative values, corresponding to the periodicity of the original
time series. The autocorrelation function can clearly extract
and demonstrate periodicity even from much noisier data. As
diurnal cycle is common in storage workloads, it is vital that
benchmarks come with the option to generate such traffic.

The observed self similarity at smaller time scales can also
be attributed to traffic conforming to heavy tailed distributions
such as the Pareto distribution. Heavy tailed distributions can
also result in larger H values similar to the long range depen-
dent process. As summing heavy-tailed random variables does
not average out, but rather leads to a heavy-tailed sum, when
a process composed of heavy-tailed samples is aggregated,
we will get a process with similar statistics. Paxson et al.
showed that ’pseudo self similar’ processes, arrival processes
that appear to some extent self similar, could be produced
by constructing arrivals using Pareto interarrivals, and that the
generated traffic has large-scale correlations and the visual self
similarity property, though the traffic generated is not actually
long-range dependent (and thus not self similar) [21].

Roughan et al. noted that Internet backbone traffic has both
daily and weekly periodic components, as well as a longer-
term trend, and superimposed on top of these components are
shorter time scale stochastic variations [31]. They modeled
such traffic by segmenting the traffic into a regular, predictable
component, and a stochastic component. Our final category,
the envelope-guided process is similar to their approach. A
predictable component such as a sine wave function determines
the arrival rate per time interval, and the actual inter arrivals
are generated from a secondary distribution such as the Pareto
distribution. While the overall arrival rate is determined by an
arrival rate function, the burstiness of the arrivals is determined
by the secondary distribution selected.



IV. DESIGN AND IMPLEMENTATION

The Yahoo! Cloud Serving Benchmark is a client program,
written in Java, that is designed to generate requests con-
forming to user-specified workload. YCSB client architecture,
as shown in Figure 2, has a thread-safe workload generator
that generates requests according to user specifications in a
workload configuration file, a workload executor to execute
the generated requests, a database interface layer to connect
with and pass requests to the database, and a separate thread
to periodically collect and report the status. By default, the
workload executor runs a single thread, but is configurable
and can be increased by the user. Each executor thread gets
the request from the thread-safe workload generator and sends
it to the database through its own instance of the database
layer.
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Fig. 2. YCSB client architecture. The workload executor drives multiple
threads to send requests generated by the workload generator to the database.

The threads perform back-to-back synchronous IO as
shown in Figure 3a. Each thread sends a request to the
database, waits for the response and immediately sends the
next request once the previous response is received. When
configured to run with multiple threads, the total number
of operations to be performed is equally divided among the
threads and each thread runs its share of operations in the
same synchronous fashion, in parallel. As shown in Figure 3a,
the threads start execution at slightly different times to avoid
hitting the database at the same time, and after that the time
requests are sent depends on previous completions.

R1 R2 R3 R4

R1 R2 R3 R4

R1 R2 R3 R4

Thread 1

Thread 2

Thread N

(a) By default, each thread sends requests, waits for the completion
of the sent request, and immediately sends the next request.

R1 R2 R3 R4

R1 R2 R3 R4

R1 R2 R3 R4

Thread 1

Thread 2

Thread N
1 Millisecond 1 Millisecond

(b) If user specifies a target load resulting in say 2 requests per
millisecond per thread, requests may be delayed depending on whether
2 request per millisecond has been completed.

Fig. 3. YCSB’s request execution process.

To control the load offered to the database, the threads
come with the ability to throttle the rate at which requests are
generated. When a target arrival rate is specified, after every

request the thread monitors the number of requests generated
until then and the elapsed time, and sleeps if necessary to
maintain the target arrival rate. The resulting request execution
process looks as in Figure 3b, in which the user specified target
throughput results in 2 requests per millisecond per thread. If
the target specified is low, the threads could all hit the database
at the same time, but some may not due to timing inaccuracies
resulting from sleep.

TABLE I. ADDITIONAL CONFIGURATION PARAMETERS

Parameters Description

arrivalgenerator Specifies the generator to use. Accepts constant,
poisson, self similar, and diurnal.

ss.bias Specifies bias b in the b-model, used to generate
self similar traffic.

diurnal.modulation Specifies the diurnal cycle modulation.

diurnal.cyclelength Specifies length of the diurnal cycle in minutes.

diurnal.distribution Specifies the distribution to use for the stochastic
variation.

diurnal.distribution.shape Specifies the distribution’s shape parameter.

We have implemented three inter-arrival time generators as
per the three models described in the previous section. Each
YCSB client is designed to have its own inter-arrival time
generator that determines the arrivals for the generated traffic.
For a Poisson process, an exponential distribution is used to
generate the inter-arrival times. For a self similar process, we
implemented the b model and the bias b is user configurable.
For the envelope-guided process, we have implemented a sine
wave function, the shape of which is user configurable, which
is used to determine the request arrivals per second. The actual
inter-arrivals for the envelope-guided process are obtained
from a secondary configurable distribution, such as the Pareto
distribution. The envelope function could take a number of
forms as per the need, and our work could be extended to
include more patterns, as well as more secondary distribution
choices.

IA1 IA2 !A3Master Executor

Thread 
Pool

R1 R3R2 R4

R1

R2

R3

R4

R1

R2

Fig. 4. Our modifications to the workload executor to facilitate realistic
arrivals. If threads in the pool are unavailable either due to configuration or
slow response, there could be delay as in R4.

We assume that the request sizes are independent of arrival
times, as the only published key-value workload study found
that the request arrivals are not correlated to the request
sizes. Thus, no modifications to YCSB’s workload generator
was necessary. Our changes include new additions to the
configuration parameters, to specify the choice of inter-arrival



time generators, and shape parameters for specific generators,
and modifications to the workload executor, to utilize the inter-
arrival times generated by specified inter-arrival generators.
The additional parameters we introduced and their descriptions
are listed in Table I

We noticed that, even with nanosleep and big-resolution
timers, sleep does not always wake up as instructed and
gives rise to lot of timing inaccuracies. Busy wait of all
available threads is also out of the question, due to the
high CPU overhead. We redesigned the workload executor,
as shown in Figure 4, to facilitate generating bursts of IO
activity at specified time intervals. We utilize Java’s thread pool
functionality to have a number of threads active at any given
time. Though the thread pool provides its own task queue and
can pick threads once they are available to serve other tasks,
we found the automatic detection of thread availability to be
slower. So, we maintain our own thread queue, to which we
add a thread once it is done servicing a request, and instruct the
thread pool to execute the first available thread in our queue
when needed. The master workload executor obtains the inter-
arrival times from the inter-arrival generator, busy waits until
the next request is due to be issued, and then issues the request
using the first available thread.

V. EVALUATION

In this section, we evaluate the accuracy and the effec-
tiveness of our generators. After a brief description of our
experimental setup, we generate traffic using a variety of
configurations, and show that the generated traffic conforms to
the specified arrival processes, both visually and empirically,
via illustrations and statistical analysis of the generated traffic.
Finally, we demonstrate the usefulness of realistic arrivals by
evaluating a state-of-the-art key-value embeddable database
library under all three models of request arrivals.

A. Experimental Setup

The evaluation was done on a Fedora 21 linux machine that
has a quad-core 3.30 GHz Intel(R) Core(TM) i5-3550 proces-
sor with a 128 KB L1 cache, 1 MB L2 cache, and a 6 MB L3
cache, and 16 GB of RAM. For the application demonstration,
the database evaluated was an embeddable database and to be
able to connect and communicate with YCSB, LevelDB [12]
was used with the MapKeeper [32] server. Both the YCSB
client and Mapkeeper server was run on the same machine.
The database was stored on a separate dedicated 160 GB single
platter Seagate SATA disk drive running ext4 filesystem.

B. Realistic Arrival Visualization

For evaluating the arrival characteristics of the generated
traffic, we ran the YCSB client against the YCSB’s placeholder
database, the basic database. The basic database receives all
requests, does nothing, optionally injects delays, and reports a
successful completion. We modified it slightly, to log the re-
quests received with a timestamp. Throughout this subsection,
all our experiments specified a target request rate of 10,000
operations per second, for better visual comparison of the
different traffic generated.

Figure 5 shows YCSB’s original behavior when executed
with 1, 4, and 8 threads. We can see from the bottom graph that

Fig. 5. Original YCSB request arrival pattern for a target rate of 10,000
operations per second.

the arrival rate mostly remains between 9990-10010 operations
per second, and the minor variations are typically a result
of sleep inaccuracies. The top two graphs zoom in on a
small interval of time, 60 seconds and 100 milliseconds. The
arrivals at the millisecond interval, the topmost graph, shows
the number of arrivals oscillating, and is particularly evident
in the single threaded case. This is because the basic database
does nothing and returns immediately and the client thread
performs all IO at a time and then sleeps. But having multiple
threads smoothes them out as different threads are executing
and sleeping at different times.

Fig. 6. Traffic generated by our modified workload executor for a target
rate of 10,000 operations per second, configured with a constant and Poisson
request arrival process.

Figure 6 illustrates the traffic generated when configured
with a constant arrival process and a Poisson arrival process by
our modified workload executor. The constant arrival process
illustrates how our framework is not subject to the sleep related
inaccuracies seen in the original YCSB, and is able to send
requests at generated intervals precisely. As discussed earlier,
the Poisson process may look bursty at smaller time scales,



Fig. 7. Self similar traffic generated by our modified workload executor, for
a target rate of 10,000 operations per second, using the b-model configured
with values 0.65 and 0.75.

but when aggregated gets smoothened.

Figure 7 shows self similar arrivals generated using the b-
model. Traffic bursts can be clearly seen at all time scales,
minutes, seconds, and milliseconds, and aggregation does not
smooth the traffic as in the Poisson process, as described
earlier. As noted before, the bias b, which is configurable,
determines the burstiness of the generated traffic. A bias equal
to 0.75 creates more bursts than does a 0.65 bias.

Fig. 8. Envelope-guided arrivals, configured with a diurnal envelope com-
bined with a Pareto stochastic variations, for a target rate of 10,000 operations
per second.

The generated envelope-guided arrivals can be seen Fig-
ure 8. The envelope function here is a diurnal cycle with the
stochastic variations provided via Pareto inter-arrivals. α is
Pareto’s shape parameter and determines the variations intro-
duced in the traffic. As seen in the figure, α = 1.9 generates
bursts at smaller timescales and smoothes out when aggre-
gated, similar to a Poisson process. But α = 1.1 introduces lots
of variations and generates bursts at different timescales. This

traffic with periodicity is not really self similar, but behaves a
like self similar process.

Fig. 9. Auto Correlation Function plot for a sample short workload.

C. Empirical Evaluation of Arrivals

We empirically evaluate the generated request arrival in this
subsection to show that their statistic characteristics hold. We
use both the Auto Correlation Function plot and Hurst param-
eter estimation for the evaluation. For better visualization, we
present the ACF plot of the inter-arrivals generated for a short
duration run, in Figure 9. It can be seen from the figure that,
as described earlier, ACF of the inter-arrivals of the Poisson
traffic quickly reaches near zero and remains close to zero
throughout. But the ACF of the inter-arrivals of the self similar
traffic with a bias 0.65 decays slowly to zero. The periodicity
present in the envelope-guided diurnal traffic is also clearly
visible, even with the presence of stochastic variations. The
ACF plots of the arrivals generated per second for the runs
shown in the previous subsection was also similar.

Table II shows the results of the Hurst parameter estimation
for the arrivals visualized in the previous subsection. We
present the estimations for both a short duration inter-arrival
time series picked from the beginning of the entire run, and
the entire run’s arrivals per second time series. As mentioned
earlier, we use the tool Selfis [28] to estimate H using five
different methods, namely the Aggregate Variance method, R/S
plot, Periodogram, the Abry-Veitch Estimator, and the Whittle
Estimator, and detailed descriptions of the various methods
can be found in Feitelson’s book on workload modeling [20].
As seen in the table, there are variations among the values
estimated by the different methods, hence the approach of
using different methods for the estimation.

The general practice is to declare a process as self similar
if most methods result in a Hurst estimation of above 0.5, and
if most estimate it close to 0.5, a Poisson process. The results
show that the arrivals generated for both the Poisson and self
similar process are indeed Poisson and self similar, when seen
at both scales. When seen as a whole, the diurnal process also
results in higher Hurst estimates owing to high variability in
the process.



TABLE II. HURST PARAMETER ESTIMATION

Aggregate R/S Periodo- Abry-Veitch Whittle
Variance gram Estimator Estimator

Small Part Of The Entire Inter-Arrival Time Series

Poisson

0.455 0.505 0.481 0.453 0.5

Bias Self Similar

0.728 0.698 0.626 0.695 0.509 0.5

0.75 0.761 0.636 0.757 0.656 0.559

alpha Envelope-Guided

1.1 0.465 0.501 0.492 0.559 0.5

1.5 0.447 0.491 0.49 0.547 0.5

1.9 0.499 0.482 0.504 0.526 0.5

Entire Arrivals Per Second Time Series

Poisson

0.447 0.002 0.469 0.529 0.5

Bias Self Similar

0.65 0.859 0.777 1.003 0.986 0.954

0.75 0.862 0.663 1.041 1.122 0.996

alpha Envelope-Guided

1.1 0.835 0.666 0.72 0.683 0.766

1.5 0.817 0.631 0.673 0.747 0.775

1.9 0.784 0.306 1.494 0.585 0.999

D. Demonstration

In this subsection, we demonstrate the need for realistic
arrivals by evaluating a state-of-the-art key-value database
library using requests generated by all three arrival models
we implemented in YCSB.

LevelDB: LevelDB is an open-source embeddable database
library, that was written at Google and follows the same
design as BigTable’s [33] tablet. Like many modern key-value
databases that strive to offer both good random insert and
good sequential read performance, it follows a Log-Structured
Merge (LSM) [34] tree based data management. An LSM-tree
contains multiple ordered log-structured indexes, one in the
memory and the others on disk, and when any index exceeds
a per-determined size threshold, parts of it are compacted and
merged with the index in the next level.

The compaction process, that both cleans and reorganizes
data, is typically implemented as a background process that
co-exists with foreground requests. Compaction is either done
periodically, as in LevelDB or during administrator specified
time window, as in HBase [35]. In essence, many systems
similar to LevelDB exists, with background tasks that compete
with foreground requests and affects performance. Some other
systems such as Wang et al. ’s work [36], extends LevelDB
by implementing optimized scheduling and dispatching polices
for concurrent I/O requests, to exploit the parallelism in open-
channel SSDs. Proper evaluation and comparison of such
systems is possible only with realistic arrivals that generates
both periods of activity and downtime realistically.

Hence, we have chosen LevelDB as the sample database
to demonstrate the usefulness of our work. LevelDB is a user-
level library that stores its data as files on the filesystem.
Periodically, some of the files are to be compacted, and this
happens along with serving incoming requests. As mentioned

earlier, we run LevelDB on a dedicated 160GB hard disk
drive, and storage management on the drive is done by an
ext4 filesystem. LevelDB is an embeddable database and
does not have a server communication component. Hence, as
recommended by YCSB, we use MapKeeper server configured
to use LevelDB as its datastore.

All experiments in this subsection performed 100% random
inserts with 16 byte keys and 1 KB values. We ran original
YCSB against LevelDB without specifying any arrival rate
throttling using a single thread, 4 threads and 8 threads. The
overall throughput achieved by the continuous bombardment
of requests was 1712.35, 1736.6 and 1733.75 operations per
second respectively. We then ran the same workload using a
Poisson arrival process, a self similar process with bias 0.65
and a envelope-guided diurnal process with α = 1.5 Pareto
inter-arrivals, with 1700 average target arrivals per second.
The observed overall throughput of the Poisson, self similar
and envelope-guided processes are 1663.32, 1690.94, 1655.59
operations per second. For very similar throughputs (in the
range 1655–1690), we observed the per-request latencies to
vary tremendously.

The results of the above experiment is shown in detail in
Figure 10. Figure 10a is a semi-log plot of the observed per-
request latencies over time, and Figure 10b is the normalized
cumulative histogram on the latencies using logarithmic bins.
Figure 10a is presented as a semi-log plot to highlight the
requests that took really long time to complete. Without
varying anything other than the arrival process, we could
observe a high degree of variance in the observed latencies.

We can see that the peak delays appear consistently for
three of the six runs, while it is absent for most of the time
in both the Poisson traffic and the envelope-guided traffic.
Determining the cause of these peak delays require an in-
depth study of how LevelDB works. Suspecting background
compactions, we measured the time spent in compaction
during all these runs and found that the self similar traffic
spent the least amount of time in compactions, and the single
threaded original arrivals spent 141 seconds more than the self
similar traffic on compaction. Even though self similar traffic
produces the most bursty traffic, it also provides more down-
time for the compaction to proceed uninterrupted, thus taking
less time. This observation leads us to believe background
compaction scheduling could bring the delays down, and our
work could not only help identify such cases, but also aid in
realistic evaluation of intelligent schemes such as compaction
scheduling.

The latencies at the bottom in same graph appear much
denser in cases where more requests bombard the database at
any given time, that is in case of the multi-threaded original
traffic and the self similar traffic. When the traffic is more
smoother, more requests are completed sooner, as is evident
from the results. This also indicates lack of better multi-request
handling, while further investigation is required to confirm the
same. The normalized cumulative histogram in Figure 10b also
depicts how a workload’s temporal characteristics affects the
system behavior. The heavy tail highlighted in the figure shows
the difference between the original back-to-back traffic and the
realistic traffic we generate, and that systems that aim to bring
down the heavy tail must most definitely be evaluated with
realistic traffic.



(a) Semilog plot of observed latencies over the duration of the experiment.

(b) Normalized cumulative histogram of the observed latencies under various arrival patterns.

Fig. 10. Latencies measured while running a 1 KB random insert workload against LevelDB, tested under various arrival models, demonstrates the effects of
realistic request arrivals.

VI. FUTURE WORK

We believe storage benchmarks for today’s high perfor-
mance storage systems are in need of features in addition to
what we described in this work. In this section, we describe
briefly the future directions we would like to take.

1) Scaled-up Realistic Request Arrivals: We have imple-
mented realistic arrivals in a single YCSB client. To be
able to generate requests at an arrival rate high enough for
modern high performance storage systems, a single client is not

sufficient even with a high number of threads. The approach
recommended by YCSB is to use multiple clients at a same
time for higher loads.

To generate higher loads in a realistic fashion, our work
could be used in a user generative model, where each client
chooses a model representative of a distinctive user who shares
the underlying storage system with other users. For example,
to generate realistic requests in a multi-tenant cloud storage
system, each client would model a distinct tenant’s access



pattern. In the future, we would like to extend our work
to perform multi-client co-ordinated request arrivals, where
multiple clients together generate requests conforming to a
single model.

2) Content Generation: Many modern high performance
storage systems also perform additional functionalities such
as compression and de-duplication to increase the overall
throughput of the system. To compare and contrast these
functionalities, it would be immensely helpful if standard
benchmarks also come with realistic content generation with
configurable levels of duplicity and compressibility. For ex-
ample, YCSB generates values with random bytes and is
unsuitable to evaluate such functionalities.

Realistic content generation is not just applicable to stored
values, but also the keys in the recently popular variable-length
key-value storage systems. Typically, these systems allow the
keys to be of any length and not restricted to just numbers.
The key-value stores, such as LevelDB, strive to order the
keys and values as per the lexicographical order of these keys.
The throughput of these systems are largely dependent on
key content, as it can trigger different amounts of background
compaction activity, and thus, it is important that benchmarks
offer both realistic and configurable key content generation.

3) Correlation In Request Sizes: As mentioned earlier,
in this work, we assumed that the request size distribution
is independent of the request arrival rate, in line with the
observation by Facebook’s key-value workload study. But the
study may not be representative of all use-cases of the key-
value model. More real world workload studies on different
kinds of key-value workloads are required to validate our
assumption.

VII. CONCLUSION

Request arrival pattern can make a significant difference
in the results of storage systems being evaluated, because
performance observed under high yet steady client demand
may actually be very different from that observed under
bursty conditions. In this work, we categorized realistic re-
quest arrivals into three kinds, and implemented all three of
them in the popular key-value storage benchmark, YCSB.
We evaluated the arrivals we generated by showing that
their statistical properties are both realistic and in line with
commonly observed traffic patterns. We also demonstrated the
effects of realistic arrivals on system behavior by evaluating
a state-of-the-art key-value database, LevelDB, and conclude
that to be representative of real world workloads, all storage
benchmarks should provide the flexibility to generate realistic
request arrivals.
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